功能性模块:(10)Spearman‘s rank correlation coefficient的简单理解(含与PCC之间的区别)

本文主要是介绍功能性模块:(10)Spearman‘s rank correlation coefficient的简单理解(含与PCC之间的区别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spearman’s rank correlation coefficient的简单理解

1. 背景

在统计学中,斯皮尔曼等级相关系数(Spearman’s rank correlation coefficient, 或者Spearman’s ρ \rho ρ, 通常使用 ρ \rho ρ或者 r s r_s rs来表示),是一个等级相关性的非参数度量(两个变量等级之间的统计相关性)。这个相关系数使用单调函数来描述两个变量之间的关系程度。

如果两个变量的Spearman correlation和Pearson correlation相等,Person correlation评估两组变量的线性关系,Spearman correlation评估的是两组变量的单调性关系(无论是否线性)。如果没有重复的数据值,每个变量都是另外一个变量的完美单调函数时,会出现+1或者-1的完美Spearman correlation。

直观上来看,如果两个变量之间具有相似的等级(或者换句话说完全相同的等级,那么相关性就为1),相似的情况下相关性也会比较高,如果两个变量具有不同的等级(或者完全相反的情况下,那么相关性就为-1),相关性就会非常低。

那么Spearman’s coefficient适用于连续序数变量或者离散序数变量的相关性表示

2.定义

Spearman’s rank correlation coefficient被定义成等级变量之间的Pearson coefficient。

对于样本容量为n的样本,将n个原始数据 X i X_i Xi, Y i Y_i Yi转换成等级数据 r g X i rg_{X_i} rgXi, r g Y i rg_{Y_i} rgYi,并且 r s r_s rs可以按照如下的公式进行计算

r s = ρ r g X i , r g Y i = c o v ( r g X , r g Y ) σ r g X σ r g Y r_s =\rho_{rg_{X_i},rg_{Y_i}}=\frac{cov(rg_X, rg_Y)}{\sigma_{rg_X}\sigma_{rg_Y}} rs=ρrgXi,rgYi=σrgXσrgYcov(rgX,rgY)

其中 ρ \rho ρ表示的是Pearson correlation coefficient(PCC),但是使用的变量是转换成等级后的变量。
c o v ( r g X , r g Y ) cov(rg_X, rg_Y) cov(rgX,rgY)是转换成等级变量之间的协方差

σ r g X \sigma_{rg_X} σrgX, σ r g Y \sigma_{rg_Y} σrgY是转换成等级变量后的标准差

只有当所有n个等级都是不同的整数是,才可以使用下面的公式进行计算
r s = 1 − 6 ∑ d i 2 n ( n 2 − 1 ) r_s=1-\frac {6\sum{d_i^2}}{n(n^2-1)} rs=1n(n21)6di2

其中 d j = r g ( X i ) − r g ( Y i ) d_j=rg(X_i)-rg(Y_i) dj=rg(Xi)rg(Yi)是两个变量值等级之间的差异

3.代码实现

很简单的代码实现

def ComputeRs(a, b):aa = np.column_stack((a, b))# rank的方式有很多种,这里使用的average的方式aa_ranked = np.apply_along_axis(stats.rankdata, 0, aa)rs = np.corrcoef(aa_ranked, rowvar=0)return rs[1, 0]

4. Spearman‘s rank correlation coefficient 与Pearson Correlation coeffiicient的区别

最主要的区别是:

  • Pearson Correlation coeffiicient是关注的两组数据的线性相关性
  • Spearman‘s rank correlation coefficient 是关注两组数据的单调性,换句话说是两组数据的趋势

4.1 线性正相关

在这里插入图片描述

4.2 线性负相关

在这里插入图片描述

4.3 非线性函数(Sigmoid)

在这里插入图片描述
可以看到Spearman还是相关性几乎为+1

4.4 非线性函数(二次函数)

在这里插入图片描述

4.5 随机数

在这里插入图片描述

4.6 异常值

在这里插入图片描述
总结,从4.6上可以看出,一旦数据存在异常值,那么Spearman‘s rank correlation coefficient的鲁棒性会更好一些。

这篇关于功能性模块:(10)Spearman‘s rank correlation coefficient的简单理解(含与PCC之间的区别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390984

相关文章

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab