【Loki】最佳实践 - 基于LogQL的Metric

2023-11-11 15:12
文章标签 最佳 实践 loki metric logql

本文主要是介绍【Loki】最佳实践 - 基于LogQL的Metric,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1. 前言
    • 2. 最佳实践
    • 3. 后记
    • 4. 参考

1. 前言

职业生涯一直都是在传统软件行业里,因此所接触到的系统多以单体为主,规模体量上限低,因此不论是团队技术氛围,还是实际的资源投入上,监控这一块都属于是年三十晚上打的兔子 —— 有你过年,没你也过年。

虽然一直缺乏实际的机会来实际体验监控在大型软件架构上的用途,但在平时的阅读理论熏陶,以及对于实际工作的刻意观察和思考之下,笔者一直也是尝试在推广自己对于监控的理解。

没有监控的应用运行如同闭眼开车,突出一个赌人品。
~
如果你不能测量它,你就无法优化它。所以监控应该是所有改良的起始步骤。
~
更重要的,也是需要不断普及的一个常识 —— 监控工具的使用与监控功能的实现和高效应用之间不是等价关系。监控的主要目:

  1. 问题被报告时,辅助更为快速的定位问题,不断缩短问题的MTTR。(这是一个没有终点的工作)
  2. 问题发生初始阶段,于客户之前先察觉问题,增强自身应对问题的灵活度。
  3. 通过统计分析,料敌于先,为应用优化提供指导和方向。

本文重点关注以上的第三点 —— “通过统计分析,为应用优化提供指导和方向”。就我个人理解,这才是监控的最大价值所在,解决问题只是最初级的CMMI1级,能够预测问题至少也是CMMI4了。

2. 最佳实践

注意:以下功能只是引子,启发思维之用,最重要的是站在系统全局,站在研发和产品的视野上,换位思考之下自主分析总结出更多的指标。不断为了系统优化指明方向,将系统优化方向的指导权牢牢掌握在自己手上,化被动为主动

正式开始前,先交代下背景。

  1. 背景项目为微服务架构,其日志格式整体分两类:access log(访问日志)和 business log(业务日志),具体格式如下:

    # access log(系统访问日志,使用logback-access组件自动实现)
    [%t{yy-MM-dd HH:mm:ss.SSS}][%tid][%clientHost][%requestURL,%statusCode][%elapsedTime,%i{Referer}][%reqAttribute{client}][%i{User-Agent}][%reqAttribute{userId}][%reqAttribute{serviceName}][%reqAttribute{serviceSourceType}][%reqAttribute{serviceType}][%reqAttribute{serviceOwner}][#%requestContent#][#%responseContent#]# business log(业务代码中采用log.xxx()方式输出的日志)
    [%d{yy-MM-dd HH:mm:ss.SSS}][%X{tid}][pid:${PID:-}][tid:%15.15t][%-40.40logger:%line][%5p] %msg%n
    
  2. promtail采集时,对日志进行了必须label标记:module(日志所属模块)jobfilename。(遵从最佳实践,我们尽量减少了label的使用)
    2.1 对于module label,我们简单地按照既有模块进行标记。分为:api-gateway,xxx等。
    2.2 对于job label,我们则是将其划分为gatewayLog(网关模块的access log,独立出来是为了方面专门的统计),accessLog(其它微服务模块的access log),normalLog(info/warn级别日志),errorLog(error级别日志)。

以上背景下,截至目前我们总结了如下的Metric指标:

######################### 系统QPS-以api-gateway作为切入点(过去五分钟)
rate({module="api-gateway", job="gatewayLog"}  | drop filename[5m])######################### 系统总访问量-以api-gateway作为切入点(过去2天)
count_over_time({job="gatewayLog"} | drop filename[2d])######################### 系统错误率-以api-gateway作为切入点(过去五分钟)
rate({module="api-gateway", job="errorLog"} | drop filename[5m])######################### 系统错误总数-以api-gateway作为切入点(过去五分钟)
count_over_time({module="api-gateway", job="errorLog"} | drop filename[5m])######################### 系统各模块的错误总数(过去两天)
# 这个结果里反馈得很有意思,主要错误都发生在api-gateway和serve-manager两个模块
count_over_time({job="errorLog"} | drop filename[2d])########################## 系统各模块的普通日志总数(过去两天)
# 搭配上面的"错误总数",很容易发现一些有意思的统计信息:
# server-manager模块在过去的两天里: 错误日志数量42981, 普通日志数量117
# api-gateway依然是日志产生的最大源头,存在三个数量级的差异
count_over_time({job="normalLog"} | drop filename[2d])########################## 系统各模块的所有日志总数(过去两天) ---- 以下两个任选其一
sum (count_over_time({module=~".+"}  | drop filename[2d])) by (module)count_over_time({module=~".+"}  | drop filename,job [2d])######################### url请求耗时的顺序排列
# 筛选出系统里请求最耗时的前十类url, 分析是否有进一步地优化空间
sort_desc(topk(10,quantile_over_time(0.99,{module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl !~ ".*-proxy/.*"| unwrap elapsedTime [1h]) by (requestUrl)) by (elapsedTime))sort_desc(topk(10,avg_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| drop clientIp,filename,job,level,logtime,method,module,msg,protocol,referer,serviceName,serviceOwner,serviceSourceType,serviceType,statusCode,tid,userAgent,userName| unwrap elapsedTime [1h]) by (requestUrl)))######################### 某个URL的请求耗时P99线
quantile_over_time(0.99,{module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl = "/api/server-manager/xxx/yyy/zzz"| unwrap elapsedTime [1h]) by (requestUrl)######################### 某个URL的平均请求耗时(过去一小时内)
# 将 avg_over_time 切换为 max_over_time, min_over_time可获得过去一小时内该请求的最大耗时与最小耗时
avg_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl = "/api/server-manager/xxx/yyy/zzz"| drop clientIp,filename,job,level,logtime,method,module,msg,protocol,referer,serviceName,serviceOwner,serviceSourceType,serviceType,statusCode,tid,userAgent,userName| unwrap elapsedTime [1h])######################### 监控指标serviceName为空的情况排查
sum(count_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""| label_format requestUrl=`{{regexReplaceAll  "(.*)\\?.*" .requestUrl "${1}"}}`| drop clientIp,filename,job,level,logtime,method,module,msg,protocol,referer,serviceOwner,serviceSourceType,serviceType,statusCode,tid,userAgent,userName|serviceName = ""[2d])) by (requestUrl)######################### 某个接口是否存在被调用过,被调用的次数: 以筛选过期接口。
{module="gis-manager", job="accessLog"}| json| __error__ = ""#| level = "ACCESS"| label_format requestUrl=`{{regexReplaceAll "(.*)\\?.*" .requestUrl "${1}"}}`| requestUrl =~ ".*/services.*"#====================== 非人工访问带来的请求量
sum(count_over_time({module="api-gateway", job="gatewayLog"}| json| __error__ = ""|userAgent = "fasthttp" or userAgent = "Apache-HttpClient/4.5.13 (Java/1.8.0_332)"[2d]))# api-gateway异常日志统计 —— 统计每类异常的总数,对应的url,分析到底是哪些链接到底的问题数量最多,找出优化点。
sum(count_over_time({module="api-gateway", job="errorLog"}| drop filename!~ "(?s).*PreAuthFilter.*"|= "Exception"| json| __error__ = ""| label_format exceptionType=`{{regexReplaceAll  "(?s).+?\\s(.*?)Exception:.*" .msg "${1}Exception"}}`| drop msg [2h])) by (exceptionType)

3. 后记

可以看出,以上其实都是在熟悉LogQL之后根据需求马上就能写出来的表达式,所以本文意为总结并且抛砖引玉,希望不断完全系统实时Metric库,延缓系统的腐坏速度。

过往很多时候的优化,虽然我们也是试图做全局通盘考虑,但确实全局视野的情况下,实际效果上看更多还是单点优化。

但在引入可观测性的Metric之后,情况就能发生根本性的改变 —— 现在有了一个时刻就绪的全局检验方法,随时验证/检查自己的思路是否发生偏移;用客观的全局视野和数据来判定当前系统的主要矛盾,而不是靠"感觉"来决定应该先去做哪方面的优化。

4. 参考

  1. Office Site - LogQL: Log query language

这篇关于【Loki】最佳实践 - 基于LogQL的Metric的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390960

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按