基于h264的SDP相关字段解析

2023-11-11 12:48
文章标签 解析 相关 h264 sdp

本文主要是介绍基于h264的SDP相关字段解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

H264的RTP中有三种不同的基本负载(Single NAL,Non-interleaved,Interleaved)

应用程序可以使用第一个字节来识别。

 

在SDP中也说明了本次会话的属性

SDP 参数 
下面描述了如何在 SDP 中表示一个 H.264 流:
. "m=" 行中的媒体名必须是 "video"
. "a=rtpmap" 行中的编码名称必须是 "H264".
. "a=rtpmap" 行中的时钟频率必须是 90000.
. 其他参数都包括在 "a=fmtp" 行中.
如:
m=video 49170 RTP/AVP 98
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=42A01E; packetization-mode=1; sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==

下面介绍一些常用的参数.
3.1 packetization-mode: 
表示支持的封包模式. 
当 packetization-mode 的值为 0 时或不存在时, 必须使用单一 NALU 单元模式.
当 packetization-mode 的值为 1 时必须使用非交错(non-interleaved)封包模式.

当 packetization-mode 的值为 2 时必须使用交错(interleaved)封包模式.

 

 

每个打包方式允许的NAL单元类型总结(yes = 允许, no = 不允许, ig = 忽略)
      Type   Packet    Single NAL    Non-Interleaved    Interleaved
                       Unit Mode           Mode             Mode
      -------------------------------------------------------------

      0      undefined     ig               ig               ig
      1-23   NAL unit     yes              yes               no
      24     STAP-A        no              yes               no
      25     STAP-B        no               no              yes
      26     MTAP16        no               no              yes
      27     MTAP24        no               no              yes
      28     FU-A          no              yes              yes
      29     FU-B          no               no              yes
      30-31  undefined     ig               ig               ig


这个参数不可以取其他的值.

3.2 sprop-parameter-sets: SPS,PPS
这个参数可以用于传输 H.264 的序列参数集和图像参数 NAL 单元. 这个参数的值采用 Base64 进行编码. 不同的参数集间用","号隔开.


3.3 profile-level-id:
这个参数用于指示 H.264 流的 profile 类型和级别. 由 Base16(十六进制) 表示的 3 个字节. 第一个字节表示 H.264 的 Profile 类型, 第三个字节表示 H.264 的 Profile 级别:

3.4 max-mbps: 
这个参数的值是一个整型, 指出了每一秒最大的宏块处理速度.

 

Rtp payload的第一个字节和264的NALU类似

 

+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|F|NRI| Type    |
+---------------+

 

F: 1 个比特.

forbidden_zero_bit. 在 H.264 规范中规定了这一位必须为 0.

NRI: 2 个比特.

nal_ref_idc. 取 00 ~ 11, 似乎指示这个 NALU 的重要性, 如 00 的 NALU 解码器可以丢弃它而不影响图像的回放. 不过一般情况下不太关心这个属性.

Type: 5 个比特.

nal_unit_type. 这个 NALU 单元的类型. 简述如下:
0     没有定义
1-23 NAL单元 单个 NAL 单元包.
24    STAP-A   单一时间的组合包
24    STAP-B   单一时间的组合包
26    MTAP16   多个时间的组合包
27    MTAP24   多个时间的组合包
28    FU-A     分片的单元
29    FU-B     分片的单元
30-31 没有定义

例子:

0x5C=01011100 (F:0  NRI:10  Type:28) FU-A

0x41=01000001 (F:0  NRI:10  Type:01)Single NAL

0x68=01000100 (F:0  NRI:10  Type:08)Single NAL

 

Single NAL Unit Mode :Type[1-23] packetization-mode=0


对于 NALU 的长度小于 MTU 大小的包, 一般采用单一 NAL 单元模式.
对于一个原始的 H.264 NALU 单元常由 [Start Code] [NALU Header] [NALU Payload] 三部分组成, 其中 Start Code 用于标示这是一个 NALU 单元的开始, 必须是 "00 00 00 01" 或 "00 00 01", NALU 头仅一个字节, 其后都是 NALU 单元内容.
打包时去除 "00 00 01" 或 "00 00 00 01" 的开始码, 把其他数据封包的 RTP 包即可.

 

 

 

 

Non-interleaved Mode:Type[1-23,24,28] packetization-mode=1

       Type=[1-23]的情况 参照 packetization-mode=0

Type=28 FU-A

+---------------+---------------+
|0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|F|NRI| Type:28 |S|E|R| Type    |
+---------------+---------------+

 

S:开始标志

E:结束标志 (与 Mark相同)

R:必须为0

 

Type:h264的NALU Type

 

例:

 

0x7C85=01111100 10000101 (开始包)

0x7C05=01111100 00000101 (中间包)

0x7C45=01111100 01000101 (结束包)


Type=23  STAP-A

0               1             2                 3
|0 1 2 3 4 5 6 7|8 9 0 1 2 3 4|5 6 7 8 9 0 1 2 3|4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          RTP Header                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAP-A NAL HDR |         NALU 1 Size           | NALU 1 HDR    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         NALU 1 Data                           |
:                                                               :
+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|               | NALU 2 Size                   | NALU 2 HDR    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         NALU 2 Data                           |
:                                                               :
|                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               :...OPTIONAL RTP padding        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 

[cpp]  view plain  copy
  1. class H264NALUParser    
  2. {  
  3. public:  
  4.     H264NALUParser(int width , int height);  
  5.     H264NALUParser();  
  6.     virtual ~H264NALUParser();  
  7.     void SetBuffer(unsigned char * buffer,int len,int f,int nri,int type);  
  8.     BOOL readOnePacket(unsigned char * buffer,int &len);  
  9.     BOOL isPacketOutstanding();  
  10. private:  
  11.     unsigned char * m_pNaluBuffer;  // NALU数据指向的缓冲区的指针  
  12.     unsigned int m_nNaluSize;       // NALU数据缓冲区的大小  
  13.     unsigned char * m_pCurNaluPos;  //指向下一个数据包要读取的缓冲区指针  
  14.     int m_nFrameWidth;  
  15.     int m_nFrameHeight;  
  16.     int m_nPacketCounts;  
  17.     int m_nPacketSeqNum;  
  18.     int m_nF;  
  19.     int m_nNRI;  
  20.     int m_nType;  
  21.     enum {  
  22.         STAP_A = 24,  
  23.         STAP_B = 25,  
  24.         MTAP16 = 26,  
  25.         MTAP24 = 27,  
  26.         FU_A   = 28,  
  27.         FU_B   = 29  
  28.     };  
  29. };    
  30.   
  31. // class H264NALUParser /  
  32. H264NALUParser::H264NALUParser(int width , int height)  
  33. {  
  34.     m_nFrameWidth   = width;  
  35.     m_nFrameHeight  = height;  
  36.     m_pNaluBuffer   = NULL;  
  37.     m_nNaluSize     = 0;  
  38.     m_nPacketCounts = 0;  
  39.     m_nPacketSeqNum = 0;  
  40.     m_nF            = 0;  
  41.     m_nNRI          = 0;  
  42.     m_nType         = 0;  
  43. }  
  44. H264NALUParser::H264NALUParser()  
  45. {  
  46.     m_pNaluBuffer   = NULL;  
  47.     m_nNaluSize     = 0;  
  48.     m_nPacketCounts = 0;  
  49.     m_nPacketSeqNum = 0;  
  50.     m_nF            = 0;  
  51.     m_nNRI          = 0;  
  52.     m_nType         = 0;  
  53. }  
  54. H264NALUParser::~H264NALUParser()  
  55. {  
  56. }  
  57. void H264NALUParser::SetBuffer(unsigned char * buffer,int len,int f,int nri,int type)  
  58. {  
  59.     m_pNaluBuffer   = buffer;  
  60.     m_nNaluSize     = len;  
  61.     m_nF            = f;  
  62.     m_nNRI          = nri;  
  63.     m_nType         = type;  
  64.     m_pCurNaluPos   = m_pNaluBuffer;  
  65.     m_nPacketCounts = (m_nNaluSize + H264_MTU - 1) / H264_MTU;  
  66.     m_nPacketSeqNum = 0;  
  67. }  
  68. BOOL H264NALUParser::readOnePacket(unsigned char * buffer,int &len)  
  69. {  
  70.     if(m_pCurNaluPos >= m_pNaluBuffer + m_nNaluSize)  
  71.     {  
  72.         return FALSE;  
  73.     }  
  74.     struct h264_rtp_hdr header;  
  75.     int headersize;  
  76.     unsigned char * pCurBuf = buffer;  
  77.     if(m_nNaluSize <= H264_MTU)// Single NALU  
  78.     {  
  79.         header.SingleNALU.f     = m_nF;  
  80.         header.SingleNALU.nri   = m_nNRI;  
  81.         header.SingleNALU.type  = m_nType;  
  82.         headersize = sizeof(header.SingleNALU);  
  83.         memcpy(pCurBuf,&(header.SingleNALU),headersize);  
  84.         pCurBuf += headersize;  
  85.     }  
  86.     else// FU-A  
  87.     {  
  88.         header.FU_A.f           = m_nF;  
  89.         header.FU_A.nri         = m_nNRI;  
  90.         header.FU_A.type_indicator  = FU_A;  
  91.         if(0 == m_nPacketSeqNum)  
  92.         {  
  93.             header.FU_A.s       = 1;  
  94.         }  
  95.         else  
  96.         {  
  97.             header.FU_A.s       = 0;  
  98.         }  
  99.         if(m_nPacketSeqNum == m_nPacketCounts - 1)  
  100.         {  
  101.             header.FU_A.e       = 1;  
  102.         }  
  103.         else  
  104.         {  
  105.             header.FU_A.e       = 0;  
  106.         }  
  107.         header.FU_A.r           = 0;  
  108.         header.FU_A.type_header = m_nType;  
  109.         //  
  110.         headersize = sizeof(header.FU_A);  
  111.         memcpy(pCurBuf,&(header.FU_A),headersize);  
  112.         pCurBuf += headersize;  
  113.     }  
  114.     if(m_nPacketSeqNum < m_nPacketCounts - 1)  
  115.     {  
  116.         memcpy(pCurBuf,m_pCurNaluPos,H264_MTU);  
  117.         m_pCurNaluPos += H264_MTU;  
  118.         len = headersize + H264_MTU;  
  119.     }  
  120.     else  
  121.     {  
  122.         int remainLen = m_nNaluSize % H264_MTU;  
  123.         if(0 == remainLen)  
  124.         {  
  125.             remainLen = H264_MTU;  
  126.         }  
  127.         memcpy(pCurBuf,m_pCurNaluPos,remainLen);  
  128.         m_pCurNaluPos += remainLen;  
  129.         len = headersize + remainLen;  
  130.     }  
  131.     m_nPacketSeqNum ++;  
  132.     return TRUE;  
  133. }  
  134. BOOL H264NALUParser::isPacketOutstanding()  
  135. {  
  136.     return (m_nPacketSeqNum < m_nPacketCounts);  
  137. }  

Interleaved Mode:Type[26-29] packetization-mode=2



原文链接:http://blog.csdn.net/zblue78/article/details/5948538

这篇关于基于h264的SDP相关字段解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390161

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六