OpenCV中更稳更快的边缘检测方法,快速查找线、圆、椭圆--EdgeDrawing-C++代码

本文主要是介绍OpenCV中更稳更快的边缘检测方法,快速查找线、圆、椭圆--EdgeDrawing-C++代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机视觉之家看到快速圆检测Edge Drawing,其效果比霍夫要好,速度更快(具体效果可以参考视觉之家的文章),上面C++代码不全,那么好的检测效果国内资料竟然那么少,后在opencv的开发文档中找到了C++代码,在此分享学习交流。

实战 | OpenCV中更稳更快的找圆方法--EdgeDrawing使用演示(详细步骤 + 代码)_opencv 找圆_计算机视觉之家的博客-CSDN博客

OpenCV: EdgeDrawing

OpenCV: fld_lines.cpp

#include <iostream>#include "opencv2/imgproc.hpp"
#include "opencv2/ximgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"using namespace std;
using namespace cv;
using namespace cv::ximgproc;int main(int argc, char** argv)
{string in;CommandLineParser parser(argc, argv, "{@input|corridor.jpg|input image}{help h||show help message}");if (parser.has("help")){parser.printMessage();return 0;}in = samples::findFile(parser.get<string>("@input"));Mat image = imread(in, IMREAD_GRAYSCALE);if( image.empty() ){return -1;}// Create FLD detector// Param               Default value   Description// length_threshold    10            - Segments shorter than this will be discarded// distance_threshold  1.41421356    - A point placed from a hypothesis line//                                     segment farther than this will be//                                     regarded as an outlier// canny_th1           50            - First threshold for//                                     hysteresis procedure in Canny()// canny_th2           50            - Second threshold for//                                     hysteresis procedure in Canny()// canny_aperture_size 3            - Aperturesize for the sobel operator in Canny().//                                     If zero, Canny() is not applied and the input//                                     image is taken as an edge image.// do_merge            false         - If true, incremental merging of segments//                                     will be performedint length_threshold = 10;float distance_threshold = 1.41421356f;double canny_th1 = 50.0;double canny_th2 = 50.0;int canny_aperture_size = 3;bool do_merge = false;Ptr<FastLineDetector> fld = createFastLineDetector(length_threshold,distance_threshold, canny_th1, canny_th2, canny_aperture_size,do_merge);vector<Vec4f> lines;// Because of some CPU's power strategy, it seems that the first running of// an algorithm takes much longer. So here we run the algorithm 10 times// to see the algorithm's processing time with sufficiently warmed-up// CPU performance.for (int run_count = 0; run_count < 5; run_count++) {double freq = getTickFrequency();lines.clear();int64 start = getTickCount();// Detect the lines with FLDfld->detect(image, lines);double duration_ms = double(getTickCount() - start) * 1000 / freq;cout << "Elapsed time for FLD " << duration_ms << " ms." << endl;}// Show found lines with FLDMat line_image_fld(image);fld->drawSegments(line_image_fld, lines);imshow("FLD result", line_image_fld);waitKey(1);Ptr<EdgeDrawing> ed = createEdgeDrawing();ed->params.EdgeDetectionOperator = EdgeDrawing::SOBEL;ed->params.GradientThresholdValue = 38;ed->params.AnchorThresholdValue = 8;vector<Vec6d> ellipses;for (int run_count = 0; run_count < 5; run_count++) {double freq = getTickFrequency();lines.clear();int64 start = getTickCount();// Detect edges//you should call this before detectLines() and detectEllipses()ed->detectEdges(image);// Detect linesed->detectLines(lines);double duration_ms = double(getTickCount() - start) * 1000 / freq;cout << "Elapsed time for EdgeDrawing detectLines " << duration_ms << " ms." << endl;start = getTickCount();// Detect circles and ellipsesed->detectEllipses(ellipses);duration_ms = double(getTickCount() - start) * 1000 / freq;cout << "Elapsed time for EdgeDrawing detectEllipses " << duration_ms << " ms." << endl;}Mat edge_image_ed = Mat::zeros(image.size(), CV_8UC3);vector<vector<Point> > segments = ed->getSegments();for (size_t i = 0; i < segments.size(); i++){const Point* pts = &segments[i][0];int n = (int)segments[i].size();polylines(edge_image_ed, &pts, &n, 1, false, Scalar((rand() & 255), (rand() & 255), (rand() & 255)), 1);}imshow("EdgeDrawing detected edges", edge_image_ed);Mat line_image_ed(image);fld->drawSegments(line_image_ed, lines);// Draw circles and ellipsesfor (size_t i = 0; i < ellipses.size(); i++){Point center((int)ellipses[i][0], (int)ellipses[i][1]);Size axes((int)ellipses[i][2] + (int)ellipses[i][3], (int)ellipses[i][2] + (int)ellipses[i][4]);double angle(ellipses[i][5]);Scalar color = ellipses[i][2] == 0 ? Scalar(255, 255, 0) : Scalar(0, 255, 0);ellipse(line_image_ed, center, axes, angle, 0, 360, color, 2, LINE_AA);}imshow("EdgeDrawing result", line_image_ed);waitKey();return 0;
}

这篇关于OpenCV中更稳更快的边缘检测方法,快速查找线、圆、椭圆--EdgeDrawing-C++代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/387808

相关文章

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊