“三门问题”解决方案:换不换?更换策略与贝叶斯策略?附 Java 验证代码

本文主要是介绍“三门问题”解决方案:换不换?更换策略与贝叶斯策略?附 Java 验证代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、什么是“三门问题”?
  • 二、“三门问题”解决策略详解
    • 2.1、错误策略:直觉策略与随机策略
    • 2.2、更换策略与事件分析计算
    • 2.3、贝叶斯策略及分析流程
  • 三、Java 语言验证“三门问题”
  • 总结


前言

“三门问题”作为一道经典逻辑推理题,经常被用来考察面试者的数学和逻辑思维能力,面试者需要通过掌握不同事件的属性和限制条件,运用逻辑推理和数学计算,得出不同情境下的概率。今天看到有同学面试遇“三门问题”,其中一个女孩子解答采取最稳妥的概率方法——穷举法,而大部分同学答案是“坚持不换”,选中车的概率永远是 1/n,换不换无所谓。果然经典问题是值得回味的,如果仅把思维固化在开门角度,确实选中概率永远是 1/n;如果看的是“换的角度”,当然如果你记得贝叶斯公式,那这个问题迎刃而解了,数学世界是充满无穷奥妙的!

在这里插入图片描述


声明:本文由作者“白鹿第一帅”于 CSDN 社区原创首发,未经作者本人授权,禁止转载!爬虫、复制至第三方平台属于严重违法行为,侵权必究。亲爱的读者,如果你在第三方平台看到本声明,说明本文内容已被窃取,内容可能残缺不全,强烈建议您移步“白鹿第一帅” CSDN 博客查看原文,并在 CSDN 平台私信联系作者对该第三方违规平台举报反馈,感谢您对于原创和知识产权保护做出的贡献!

文章作者:白鹿第一帅,作者主页:https://blog.csdn.net/qq_22695001,未经授权,严禁转载,侵权必究!

一、什么是“三门问题”?

“三门问题”是一道经典的逻辑推理题,也称为“三羊问题”或“蒙提霍尔问题”。

问题描述为:有三扇关闭的门,其中一扇门后面有一辆汽车,另外两扇门后面各有一只山羊。参赛者可以选择其中一扇门,然后主持人会打开另外两扇门中的一扇门,露出一只山羊。参赛者可以选择是否更换选择。

问题的关键在于,是否更换选择能够增加获得汽车的概率。这个问题常常被用来说明概率思维的重要性。

二、“三门问题”解决策略详解

解决这个问题的策略有很多,常见的包括直觉策略、随机策略、更换策略和贝叶斯策略

2.1、错误策略:直觉策略与随机策略

  • 直觉策略。最常见的直觉策略是认为参赛者选择任何一扇门的概率都是 1/3,所以如果不更换选择,获得汽车的概率就是 1/3。
  • 随机策略。如果参赛者选择随机门,即随机选择一扇门并坚持选择该门,那么获得汽车的概率仍然是 1/3。

但是,这两个策略都是错误的。很多人忽略的一点,也是这里我们需要特别注意一个事件——主持人一定会打开有山羊的一扇门,并且不能打开用户选择的门和有汽车的门! 主持人的操作已经影响到了事件的概率!为什么?别急,往下看。

今天看到有同学在面试遇“三门问题”,其中一个女孩子给了我她的解答,特别聪明但又不是很“灵巧”,她采取了最稳妥的概率计算方法——穷举法,如下是被面试女孩子的答案,大家可以看一下:

在这里插入图片描述

2.2、更换策略与事件分析计算

更换策略是一个更好的策略,选择一扇门,并在主持人展示一只山羊后更换选择。

我们列一个表,将本次所有操作事件列举出来,具体如下表所示:

第一次选择门后的物品主持人打开门后出现的物品更换门后得到的物品
山羊 1山羊 2
山羊 2山羊 1
山羊 1/山羊 2山羊 2/山羊 1

显而易见,如果不更换,事件未受影响,结果即为直觉策略与随机策略的结果,为 1/3,但是在“主持人一定会打开有山羊的一扇门,并且不能打开用户选择的门和有汽车的门”操作后,参赛者更换门后得到的物品为车的概率由 1/3 变成了 2/3。

2.3、贝叶斯策略及分析流程

贝叶斯策略是一种更加严谨的解决方式,它基于贝叶斯公式,并结合了先验概率和后验概率的概念

在这里插入图片描述
我们使用贝叶斯策略解决三门问题:假设参赛者选择门 A,然后主持人打开了门 B,揭示了一只羊。现在参赛者可以选择门 A 或门 C。

我们定义事件如下:

  • A = 您一开始选择的门是 A。
  • B = 主持人打开的门是 B。
  • C = 第三扇门是 C。

确定先验概率和事件的条件概率

  • P(A) = 1/3,因为参赛者有三个门可选,每个门的选择机会相等。
  • P(B | A) = 1/2,因为主持人必须打开没有车的门,且参赛者的选择是随机的。
  • P(B | C) = 1,因为如果参赛者选择的是门 C 而不是门 A,那么主持人只能打开门 B 来揭示一只羊。
  • P(C | A, B) = 2/3,因为如果参赛者一开始选择的是门 A,那么奖品必须在门 C 或 B 中,主持人打开门 B 后,门 C 的概率变成了 2/3。

应用贝叶斯公式:P(C | B, A) = P(B | C, A) * P(C | A) / P(B | A)= 1 * (1/3) / (1/2)= 2/3

根据计算结果得知,如果参赛者选择了门 A,并且主持人打开了门 B 揭示了一只羊,那么参赛者应该选择门 C,获得大奖的概率是 2/3。

三、Java 语言验证“三门问题”

理清解决策略之后,通过 Java 语言验证三门问题那就是简简单单,实现代码如下:

package com.bailu.test;import java.util.Random;/*** "三门问题"Java验证代码* * @author bailucool**/
public class ThreeDoors {private static final int NUM_DOORS = 3;// 定义门的数量private static Random random = new Random();// 随机数生成器private static final int percent = 100;// 定义百分比public static void main(String[] args) {int totalGames = 10000;// 定义游戏总次数int stayWinCar = 0;// 定义不更换门得到车的游戏次数int switchWinCar = 0;// 定义更换门后得到车的游戏次数for (int i = 0; i < totalGames; i++) {int carDoor = random.nextInt(NUM_DOORS);// 随机一扇门后有汽车int firstChoice = random.nextInt(NUM_DOORS);// 参赛者第一次选择的门// 主持人打开另一扇有羊的门int openedDoor;do {openedDoor = random.nextInt(NUM_DOORS);// 主持人不能打开用户选择的门和有汽车的门} while (openedDoor == firstChoice || openedDoor == carDoor);// 计算不能换门,参赛者可以获得小汽车的次数if (firstChoice == carDoor) {stayWinCar++;}// 主持人打开另一扇有羊的门,独立事件——与第一次打开门无关int secondChoice;do {secondChoice = random.nextInt(NUM_DOORS);// 主持人不能打开用户选择的门和有汽车的门} while (secondChoice == firstChoice || secondChoice == openedDoor);// 计算换门后,参赛者可以获得小汽车的次数if (secondChoice == carDoor) {switchWinCar++;}}// 将次数转换为概率,输出结果double stayWinRate = stayWinCar * 1.0 / totalGames;double switchWinRate = switchWinCar * 1.0 / totalGames;System.out.println("不更换门获得小汽车的概率为:" + stayWinRate * percent + "%");System.out.println("更换门后获得小汽车的概率为:" + switchWinRate * percent + "%");}}

在如上验证代码中,我们使用了一个名为 random 的随机数生成器来随机选择门,使用 NUM_DOORS 常量表示门的数量,通过使用 for 循环来进行多次试验进行模拟,最后输出每种选择情况获胜选中小汽车的次数,通过这个程序的输出结果进一步验证了更换策略的优势。

如果多几个门呢,还会吗?可别写下面这样的答案了!感兴趣的同学可以试一下下面的“四门问题”,欢迎大家把答案留言在文章下方!

在这里插入图片描述


文章作者:白鹿第一帅,作者主页:https://blog.csdn.net/qq_22695001,未经授权,严禁转载,侵权必究!


总结

三门问题的解决方式有很多,但是更换策略和贝叶斯策略是最为精确和可靠的两种方式。但是,对于一些参赛者来说,直觉策略和随机策略可能仍然是主要的选择方式。作为面试题,“三门问题”主要考察面试者的逻辑思维能力、数学推理能力、解决问题的能力和试错能力。同时,还考察面试者对于题目的理解和分析能力,是否能够从多个角度出发,得出正确答案。此外,面试官还可以通过观察面试者的沟通能力和表达能力,来评估他们是否具备良好的团队合作能力。

在这里插入图片描述


我是白鹿,一个不懈奋斗的程序猿。望本文能对你有所裨益,欢迎大家的一键三连!若有其他问题、建议或者补充可以留言在文章下方,感谢大家的支持!

这篇关于“三门问题”解决方案:换不换?更换策略与贝叶斯策略?附 Java 验证代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/387115

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input