OpenGL原理与实践——核心模式(一):VBO、VAO等原理解析及项目初始设置

2023-11-11 02:40

本文主要是介绍OpenGL原理与实践——核心模式(一):VBO、VAO等原理解析及项目初始设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

序言——OpenGL在是什么?为什么?做什么?

OpenGL实现了什么

OpenGL内模型数据的本质——顶点数据 

我们需要研究什么——三角形,一个图形基元

MVP变换

OpenGL渲染流程的关键——摄像机变换

OpenGL渲染管线概览

准备——项目配置

项目初始代码框架及注释

初识——三角形绘制 

OpenGL中的顶点数据格式——float数组

OpenGL中shader如何从CPU中获取数据——layout(锚点)

Shader

VBO:Vertex Buffer Object

VAO:解决锚点问题,记录了VBO的锚点信息

编译shader

设定VAO并进行渲染

整体源码


序言——OpenGL在是什么?为什么?做什么?

OpenGL实现了什么

将三维物体映射到视线方向上的一个裁剪空间(屏幕)上 

OpenGL内模型数据的本质——顶点数据 

我们需要研究什么——三角形,一个图形基元

MVP变换

OpenGL渲染流程的关键——摄像机变换

OpenGL渲染管线概览

准备——项目配置

GLFW

Download | GLFW

GLAD

https://glad.dav1d.de

 下载后,进行相应配置。

项目初始代码框架及注释

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>void framebuffer_size_callback(GLFWwindow* window, int width, int height) {glViewport(0, 0, width, height);
}void processInput(GLFWwindow* window) {if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {glfwSetWindowShouldClose(window, true);}
}int main() {//初始化OpenGL上下文环境,OpenGL是一个状态机,会保存当前状态下的渲染状态以及管线的状态glfwInit(); //,3版本以上glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//用OpenGL核心开发模式glfwWindowHint(GLFW_OPENGL_PROFILE,GLFW_OPENGL_CORE_PROFILE);//创建窗体GLFWwindow* window = glfwCreateWindow(800, 600, "OpenGl Core", nullptr, nullptr);if (window == nullptr) {std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}//把当前上下文绑定至当前窗口glfwMakeContextCurrent(window);//通过glad绑定各种函数指针if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {std::cout << "Failed to initialize GLAD" << std::endl;return -1;}//视口:需要渲染的东西在哪里glViewport(0, 0, 800, 600);//当Frame大小变动,调用回调函数调整视口大小glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);//防止窗口结束退出while (!glfwWindowShouldClose(window)) {processInput(window);//擦除画布,用定义的颜色填充glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT);//双缓冲glfwSwapBuffers(window);glfwPollEvents();}//结束,释放资源glfwTerminate();return 0;}

运行结果如下:

初识——三角形绘制 

OpenGL中的顶点数据格式——float数组

看向-Z方向

OpenGL中shader如何从CPU中获取数据——layout(锚点)

  • CPU将float顶点数据数组传入GPU
  • CPU告诉GPU如何解析这个数组
  • 调用渲染指令进行绘制

GPU显存中的布局:layout;可以理解为“锚点”,指明在这一锚点代表的区域,存放了什么样的数据。

Shader

直白来说,Shader就是跑在GPU上的一种语言,用来操作GPU。

我们先写好两个shader的内容,先大致了解一番:

vertexShader:

#version 330 core//在layout=0,这块区域放置了一个vec3
layout (location = 0 ) in vec3 aPos;//操作
void main()
{gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);
}
  • vertexShader中的数据gl_Position,会自动流入下一个阶段中,也就是fragmentShader 
  • vertexShader会被调用多少次?有多少顶点就会调用多少次

 fragmentShader:

#version 330 core
out vec4 FragColor;
void main(){FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);
}
  • fragmentShader的目的是为了输出一个数据,这里是vec4 FragColor,被定义为out类型,会被输出到下一个管线流程中。
  • fragmentShader会被调用多少次?简单来说有多少像素就会调用多少次

流程:

  • 将顶点数据转入到vertexShader,进行空间变换等操作(注意是并行的
  • 数据从vertexShader传入到fragmentShader,进行像素插值等操作(处理一堆像素点)

VBO:Vertex Buffer Object

在上面那个图中,其中的“GPU shader”就是所谓的VBO,也就是我们开辟的一块区域。

在开辟的这块空间,存储顶点数据。

那么在OpenGL中如何做这件事?

  • 获取VBO的index(由OpenGL状态机分配的index
  • 绑定VBO的index
  • 给VBO分配显存空间,并传输数据
  • 告诉shader数据的解析方式
  • 激活锚点,按照解析方式取读取数据

具体代码如下,我们在mian.cpp中添加如下函数:

//构建模型数据:VBO,
void initModel() {float vertices[] = {-0.5f, -0.5f, 0.0f,0.5f, -0.5f, 0.0f,0.0f, 0.5f, 0.0f};glGenBuffers(1, &VBO);//绑定哪一种buffer, glBindBuffer(GL_ARRAY_BUFFER, VBO);//分配显存:分配哪种buffer,分配显存大小,分配地址,使用数据的方式glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//对哪个锚点进行操作:layout=0的锚点,读3个顶点,类型为float,不需要归一化,每次步长为3个float大小,从0处开始读glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);//打开锚点:激活glEnableVertexAttribArray(0);//解绑glBindBuffer(GL_ARRAY_BUFFER, 0);
}

每个函数的作用和参数意义,这里我用注释详细标明。方便后时查阅复习。

VAO:解决锚点问题,记录了VBO的锚点信息

编译shader

VAO是与shader密切相关的一个内容,所以在此之前需要进行shader的一系列操作:

首先声明一个全局变量:

unsigned int shaderProgram = 0;

初始化Shader,并进行编译链接。 

void initShader(const char* _vertexPath, const char* _fragPath) {//shader的代码读取std::string _vertexCode("");std::string _fragCode("");std::ifstream _vShaderFile;std::ifstream _fShaderFile;_vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);_fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);try {_vShaderFile.open(_vertexPath);_fShaderFile.open(_fragPath);std::stringstream _vShaderStream, _fShaderStream;_vShaderStream << _vShaderFile.rdbuf();_fShaderStream << _fShaderFile.rdbuf();_vertexCode = _vShaderStream.str();_fragCode = _fShaderStream.str();}catch(std::ifstream::failure e) {std::string errStr = "read shader fail";std::cout << errStr << ": " << e.what() << std::endl;}const char* _vShaderStr = _vertexCode.c_str();const char* _fShaderStr = _fragCode.c_str();//shader的编译链接unsigned int _vertexID = 0, _fragID = 0;char _infoLog[512];int _successFlag = 0;//编译_vertexID = glCreateShader(GL_VERTEX_SHADER);glShaderSource(_vertexID, 1, &_vShaderStr, nullptr);glCompileShader(_vertexID);//捕捉编译过程中的状态信息glGetShaderiv(_vertexID, GL_COMPILE_STATUS, &_successFlag);if (!_successFlag) {glGetShaderInfoLog(_vertexID, 512, nullptr, _infoLog);std::string errStr(_infoLog);std::cout << errStr << std::endl;}_fragID = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(_fragID, 1, &_vShaderStr, nullptr);glCompileShader(_fragID);//捕捉编译过程中的状态信息glGetShaderiv(_fragID, GL_COMPILE_STATUS, &_successFlag);if (!_successFlag) {glGetShaderInfoLog(_fragID, 512, nullptr, _infoLog);std::string errStr(_infoLog);std::cout << errStr << std::endl;}//链接//创建一个程序shaderProgram = glCreateProgram();glAttachShader(shaderProgram, _vertexID);glAttachShader(shaderProgram, _fragID);glLinkProgram(shaderProgram);glGetProgramiv(shaderProgram, GL_LINK_STATUS, &_successFlag);if (!_successFlag) {glGetShaderInfoLog(shaderProgram, 512, nullptr, _infoLog);std::string errStr(_infoLog);std::cout << errStr << std::endl;}//删除中间文件glDeleteShader(_vertexID);glDeleteShader(_fragID);}

设定VAO并进行渲染

//构建模型数据:VBO,VAO
void initModel() {float vertices[] = {-0.5f, -0.5f, 0.0f,0.5f, -0.5f, 0.0f,0.0f, 0.5f, 0.0f};glGenVertexArrays(1, &VAO);glBindVertexArray(VAO);//之后的VBO便属于了VAO的管理范围glGenBuffers(1, &VBO);//绑定哪一种buffer, glBindBuffer(GL_ARRAY_BUFFER, VBO);//分配显存:分配哪种buffer,分配显存大小,分配地址,使用数据的方式glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//对哪个锚点进行操作:layout=0的锚点,读3个顶点,类型为float,不需要归一化,每次步长为3个float大小,从0处开始读glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);//打开锚点:激活glEnableVertexAttribArray(0);//解绑//glBindBuffer(GL_ARRAY_BUFFER, 0);glBindVertexArray(0);}
//渲染
void render() {glBindVertexArray(VAO);glUseProgram(shaderProgram);//以三角形模式绘制,从第0个顶点开始,起作用的有3个点glDrawArrays(GL_TRIANGLES, 0, 3);glUseProgram(0);
}

渲染结果:

整体源码

main.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow* window);
void initModel();
void initShader(const char* _vertexPath, const char* _fragPath);
void render();unsigned int VBO = 0;
unsigned int VAO = 0;
unsigned int shaderProgram = 0;int main() {//初始化OpenGL上下文环境,OpenGL是一个状态机,会保存当前状态下的渲染状态以及管线的状态glfwInit(); //,3版本以上glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//用OpenGL核心开发模式glfwWindowHint(GLFW_OPENGL_PROFILE,GLFW_OPENGL_CORE_PROFILE);//创建窗体GLFWwindow* window = glfwCreateWindow(800, 600, "OpenGl Core", nullptr, nullptr);if (window == nullptr) {std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}//把当前上下文绑定至当前窗口glfwMakeContextCurrent(window);//通过glad绑定各种函数指针if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {std::cout << "Failed to initialize GLAD" << std::endl;return -1;}//视口:需要渲染的东西在哪里glViewport(0, 0, 800, 600);//当Frame大小变动,调用回调函数调整视口大小glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);initModel();initShader("vertexShader.glsl", "fragmentShader.glsl");//防止窗口结束退出while (!glfwWindowShouldClose(window)) {processInput(window);//擦除画布,用定义的颜色填充glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT);render();//双缓冲glfwSwapBuffers(window);glfwPollEvents();}//结束,释放资源glfwTerminate();return 0;}void framebuffer_size_callback(GLFWwindow* window, int width, int height) {glViewport(0, 0, width, height);
}void processInput(GLFWwindow* window) {if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) {glfwSetWindowShouldClose(window, true);}
}//渲染
void render() {glBindVertexArray(VAO);glUseProgram(shaderProgram);//以三角形模式绘制,从第0个顶点开始,起作用的有3个点glDrawArrays(GL_TRIANGLES, 0, 3);glUseProgram(0);
}//构建模型数据:VBO,VAO
void initModel() {float vertices[] = {-0.5f, -0.5f, 0.0f,0.5f, -0.5f, 0.0f,0.0f, 0.5f, 0.0f};glGenVertexArrays(1, &VAO);glBindVertexArray(VAO);//之后的VBO便属于了VAO的管理范围glGenBuffers(1, &VBO);//绑定哪一种buffer, glBindBuffer(GL_ARRAY_BUFFER, VBO);//分配显存:分配哪种buffer,分配显存大小,分配地址,使用数据的方式glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//对哪个锚点进行操作:layout=0的锚点,读3个顶点,类型为float,不需要归一化,每次步长为3个float大小,从0处开始读glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);//打开锚点:激活glEnableVertexAttribArray(0);//解绑//glBindBuffer(GL_ARRAY_BUFFER, 0);glBindVertexArray(0);}//
void initShader(const char* _vertexPath, const char* _fragPath) {//shader的代码读取std::string _vertexCode("");std::string _fragCode("");std::ifstream _vShaderFile;std::ifstream _fShaderFile;_vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);_fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);try {_vShaderFile.open(_vertexPath);_fShaderFile.open(_fragPath);std::stringstream _vShaderStream, _fShaderStream;_vShaderStream << _vShaderFile.rdbuf();_fShaderStream << _fShaderFile.rdbuf();_vShaderFile.close();_fShaderFile.close();_vertexCode = _vShaderStream.str();_fragCode = _fShaderStream.str();}catch(std::ifstream::failure e) {std::string errStr = "read shader fail";std::cout << errStr << ": " << e.what() << std::endl;}const char* _vShaderStr = _vertexCode.c_str();const char* _fShaderStr = _fragCode.c_str();//shader的编译链接unsigned int _vertexID = 0, _fragID = 0;char _infoLog[512];int _successFlag = 0;//编译_vertexID = glCreateShader(GL_VERTEX_SHADER);glShaderSource(_vertexID, 1, &_vShaderStr, nullptr);glCompileShader(_vertexID);//捕捉编译过程中的状态信息glGetShaderiv(_vertexID, GL_COMPILE_STATUS, &_successFlag);if (!_successFlag) {glGetShaderInfoLog(_vertexID, 512, nullptr, _infoLog);std::string errStr(_infoLog);std::cout << errStr << std::endl;}_fragID = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(_fragID, 1, &_fShaderStr, nullptr);glCompileShader(_fragID);//捕捉编译过程中的状态信息glGetShaderiv(_fragID, GL_COMPILE_STATUS, &_successFlag);if (!_successFlag) {glGetShaderInfoLog(_fragID, 512, nullptr, _infoLog);std::string errStr(_infoLog);std::cout << errStr << std::endl;}//链接//创建一个程序shaderProgram = glCreateProgram();glAttachShader(shaderProgram, _vertexID);glAttachShader(shaderProgram, _fragID);glLinkProgram(shaderProgram);glGetProgramiv(shaderProgram, GL_LINK_STATUS, &_successFlag);if (!_successFlag) {glGetShaderInfoLog(shaderProgram, 512, nullptr, _infoLog);std::string errStr(_infoLog);std::cout << errStr << std::endl;}//删除中间文件glDeleteShader(_vertexID);glDeleteShader(_fragID);}

vertexShader.glsl 

#version 330 core
layout (location = 0) in vec3 aPos;
void main()
{gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);
};

fragmentShader.glsl 

#version 330 core
out vec4 FragColor;
void main()
{FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);
};

这篇关于OpenGL原理与实践——核心模式(一):VBO、VAO等原理解析及项目初始设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/386999

相关文章

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Spring Boot项目如何使用外部application.yml配置文件启动JAR包

《SpringBoot项目如何使用外部application.yml配置文件启动JAR包》文章介绍了SpringBoot项目通过指定外部application.yml配置文件启动JAR包的方法,包括... 目录Spring Boot项目中使用外部application.yml配置文件启动JAR包一、基本原理

SpringBoot加载profile全面解析

《SpringBoot加载profile全面解析》SpringBoot的Profile机制通过多配置文件和注解实现环境隔离,支持开发、测试、生产等不同环境的灵活配置切换,无需修改代码,关键点包括配置文... 目录题目详细答案什么是 Profile配置 Profile使用application-{profil

MySQL的触发器全解析(创建、查看触发器)

《MySQL的触发器全解析(创建、查看触发器)》MySQL触发器是与表关联的存储程序,当INSERT/UPDATE/DELETE事件发生时自动执行,用于维护数据一致性、日志记录和校验,优点包括自动执行... 目录触发器的概念:创建触www.chinasem.cn发器:查看触发器:查看当前数据库的所有触发器的定

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Java中的volatile关键字多方面解析

《Java中的volatile关键字多方面解析》volatile用于保证多线程变量可见性与禁止重排序,适用于状态标志、单例模式等场景,但不保证原子性,相较synchronized更轻量,但需谨慎使用以... 目录1. volatile的作用1.1 保证可见性1.2 禁止指令重排序2. volatile的使用