猿人学第八题:验证码 图文点选 识别新思路

2023-11-11 02:21

本文主要是介绍猿人学第八题:验证码 图文点选 识别新思路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文章:

猿人学web端爬虫攻防大赛赛题解析_第八题:验证码 图文点选_起不好名字就不起了的博客-CSDN博客_猿人学第八题

针对文字图片使用pillow对图片进行操作并判断图片相似度_kong_and_white的博客-CSDN博客_pillow pixel

上面两篇文章,前者对图片的转换、去噪等都很清晰;后者对文字如何识别提供思路。

因为题目中用的是生僻字,百度识别API,tesseract OCR等识别效果均比较差;用深度学习又有点大材小用。观察题目中的字体相对比较规整,我这里考虑使用一种新思路,使用字体库生成目标字体,然后与图片截取获得的字体,进行相似度计算。经过一番尝试,获得了较为不错的识别效果,应该能有80%-90%以上的识别成功率。

pygame.init()
font = pygame.font.Font("msyh.ttc", 74)
# 获取字库中字体
for idy in range(len(words_uni)):word = words_uni[idy]rtext = font.render(chr(int('0x' + word[2:], 16)), True, (0, 0, 0), (255, 255, 255))pygame.image.save(rtext, 'dst_pic/r_%d.png' % (idy+1))

使用微软雅黑字体,生成字体像素大小与裁剪字体一致;并进行裁边,反黑等操作。

题目中图片裁剪,不再赘述,一系列操作后,图片如下:

选取了一个图片余弦距离的算法进行计算。

这里面重点说一些,这个方法灵活度有限,且对图片裁剪对齐可能要求比较高。之前图片没有严格裁边,导致识别率始终差很多。后来做了适当裁剪后,识别率大幅度提升。而且,这个也只适用于特别规范的字体,如果字体变形严重,基本就很难匹配成功了。

为了方便大家回溯验证,我把完整代码贴出来。也主要是面向百度编程,如果有参考了未列出的,望见谅,可以提醒我补上参考。

# -*- coding:utf-8 -*-
import base64
import random
import timeimport requests
from PIL import Image
import cv2 as cv
import numpy as np
import pygame
from urllib import parse
from numpy import average, dot, linalgorig_cookie = 'Hm_lvt_c99546cf032aaa5a679230de9a95c7db=1653554941,1653659559; no-alert3=true; Hm_lvt_9bcbda9cbf86757998a2339a0437208e=1653554979,1653659562; tk=5338698171357922207; mz=TW96aWxsYSxOZXRzY2FwZSw1LjAgKFdpbmRvd3MgTlQgMTAuMDsgV2luNjQ7IHg2NCkgQXBwbGVXZWJLaXQvNTM3LjM2IChLSFRNTCwgbGlrZSBHZWNrbykgQ2hyb21lLzEwMy4wLjAuMCBTYWZhcmkvNTM3LjM2LFtvYmplY3QgTmV0d29ya0luZm9ybWF0aW9uXSx0cnVlLCxbb2JqZWN0IEdlb2xvY2F0aW9uXSw4LHpoLUNOLHpoLUNOLGVuLUdCLGVuLVVTLGVuLDAsW29iamVjdCBNZWRpYUNhcGFiaWxpdGllc10sW29iamVjdCBNZWRpYVNlc3Npb25dLFtvYmplY3QgTWltZVR5cGVBcnJheV0sdHJ1ZSxbb2JqZWN0IFBlcm1pc3Npb25zXSxXaW4zMixbb2JqZWN0IFBsdWdpbkFycmF5XSxHZWNrbywyMDAzMDEwNyxbb2JqZWN0IFVzZXJBY3RpdmF0aW9uXSxNb3ppbGxhLzUuMCAoV2luZG93cyBOVCAxMC4wOyBXaW42NDsgeDY0KSBBcHBsZVdlYktpdC81MzcuMzYgKEtIVE1MLCBsaWtlIEdlY2tvKSBDaHJvbWUvMTAzLjAuMC4wIFNhZmFyaS81MzcuMzYsR29vZ2xlIEluYy4sLFtvYmplY3QgRGVwcmVjYXRlZFN0b3JhZ2VRdW90YV0sW29iamVjdCBEZXByZWNhdGVkU3RvcmFnZVF1b3RhXSw4MjQsMCwwLDE1MzYsMjQsODY0LFtvYmplY3QgU2NyZWVuT3JpZW50YXRpb25dLDI0LDE1MzYsW29iamVjdCBET01TdHJpbmdMaXN0XSxmdW5jdGlvbiBhc3NpZ24oKSB7IFtuYXRpdmUgY29kZV0gfSwsbWF0Y2gueXVhbnJlbnh1ZS5jb20sbWF0Y2gueXVhbnJlbnh1ZS5jb20saHR0cHM6Ly9tYXRjaC55dWFucmVueHVlLmNvbS9tYXRjaC8xNCxodHRwczovL21hdGNoLnl1YW5yZW54dWUuY29tLC9tYXRjaC8xNCwsaHR0cHM6LGZ1bmN0aW9uIHJlbG9hZCgpIHsgW25hdGl2ZSBjb2RlXSB9LGZ1bmN0aW9uIHJlcGxhY2UoKSB7IFtuYXRpdmUgY29kZV0gfSwsZnVuY3Rpb24gdG9TdHJpbmcoKSB7IFtuYXRpdmUgY29kZV0gfSxmdW5jdGlvbiB2YWx1ZU9mKCkgeyBbbmF0aXZlIGNvZGVdIH0=; RM4hZBv0dDon443M=KU/P0ozhPAAOMvbdxiOcesehHWODpMFe7X9pPXsCqqt86cfAYBU6fEh0MOXe3m0MjdfFhecCKtaxqzsXh2nCDxWW9Pviai1YjA0GOFnfSUCeB9KDj/p3WvUHsRkOUWLU8UplOInkHJBD8ajCtf17VebQ/J7DY7Ehk6s06rwW6QyYbnq67mAA8NDHUUQtqXictbstPYhNHO9tdNJxkKJFnRmFEDnlNXQvUy4jd1WdMak=; m=4RoMBNYJZIk6Pec7iw2AlnJprHOz7Ig%2BwBQywv0MGqMd9rxm%2BuxRJI8CIdhKc9Uv0b92XTKXn2YL%2Fb%2FT3fsiwICcVHHxIBh63tEYK1yFjB6o8nc6PBObT13jN0RT5Vqz2nLaa7W3hEhYozau5XbmPWopvQGdu6iOX9ZTVO%2BhNFNuLLGl00kExZ8%2FSWStVXJRNHzuc0q0bOlF1kbWjFr%2BDx0HG5S42PS2oRXUAurXPtgPJHpbyVGk3SaAPNoGWPowI9isnkq%2FoLEA4Twg%2BvlcUtya135rzsSmnKY3m8sq3XfuYgbANYxb1QJAM%2BpAmrnwbvGYXxPCJvuewIHMzeXa47Q%3D%3Dr; Hm_lvt_0362c7a08a9a04ccf3a8463c590e1e2f=1653571801,1653753744; Hm_lpvt_0362c7a08a9a04ccf3a8463c590e1e2f=1653754280; sessionid=kp2d4dtrfgkcb1xng36i5bg1jz451mlr; Hm_lpvt_9bcbda9cbf86757998a2339a0437208e=1653817959; '
headers = {'accept': 'application/json, text/javascript, */*; q=0.01','accept-encoding': 'gzip, deflate, br','accept-language': 'zh-CN,zh;q=0.9,en-GB;q=0.8,en-US;q=0.7,en;q=0.6','cookie': orig_cookie,'referer': 'https://match.yuanrenxue.com/match/8','User-Agent': 'yuanrenxue.project',# 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36','x-requested-with': 'XMLHttpRequest',
}pygame.init()
font = pygame.font.Font("msyh.ttc", 74)def get_bin_table(threshold=140):table = []for i in range(256):if i < threshold:table.append(0)else:table.append(1)return tabledef sum_9_region(img, x, y, color):cur_pixel = img.getpixel((x, y))  # 当前像素点的值width = img.widthheight = img.heightif cur_pixel != color:  # 如果当前点为非color点区域,则不统计邻域值return 0if y == 0:  # 第一行if x == 0:  # 左上顶点,4邻域# 中心点旁边3个点sum = cur_pixel \+ img.getpixel((x, y + 1)) \+ img.getpixel((x + 1, y)) \+ img.getpixel((x + 1, y + 1))if color:return sumelse:return 3-sumelif x == width - 1:  # 右上顶点sum = cur_pixel \+ img.getpixel((x, y + 1)) \+ img.getpixel((x - 1, y)) \+ img.getpixel((x - 1, y + 1))if color:return sumelse:return 3 - sumelse:  # 最上非顶点,6邻域sum = img.getpixel((x - 1, y)) \+ img.getpixel((x - 1, y + 1)) \+ cur_pixel \+ img.getpixel((x, y + 1)) \+ img.getpixel((x + 1, y)) \+ img.getpixel((x + 1, y + 1))if color:return sumelse:return 6 - sumelif y == height - 1:  # 最下面一行if x == 0:  # 左下顶点# 中心点旁边3个点sum = cur_pixel \+ img.getpixel((x + 1, y)) \+ img.getpixel((x + 1, y - 1)) \+ img.getpixel((x, y - 1))if color:return sumelse:return 3 - sumelif x == width - 1:  # 右下顶点sum = cur_pixel \+ img.getpixel((x, y - 1)) \+ img.getpixel((x - 1, y)) \+ img.getpixel((x - 1, y - 1))if color:return sumelse:return 3 - sumelse:  # 最下非顶点,6邻域sum = cur_pixel \+ img.getpixel((x - 1, y)) \+ img.getpixel((x + 1, y)) \+ img.getpixel((x, y - 1)) \+ img.getpixel((x - 1, y - 1)) \+ img.getpixel((x + 1, y - 1))if color:return sumelse:return 6 - sumelse:  # y不在边界if x == 0:  # 左边非顶点sum = img.getpixel((x, y - 1)) \+ cur_pixel \+ img.getpixel((x, y + 1)) \+ img.getpixel((x + 1, y - 1)) \+ img.getpixel((x + 1, y)) \+ img.getpixel((x + 1, y + 1))if color:return sumelse:return 6 - sumelif x == width - 1:  # 右边非顶点# print('%s,%s' % (x, y))sum = img.getpixel((x, y - 1)) \+ cur_pixel \+ img.getpixel((x, y + 1)) \+ img.getpixel((x - 1, y - 1)) \+ img.getpixel((x - 1, y)) \+ img.getpixel((x - 1, y + 1))if color:return sumelse:return 6 - sumelse:  # 具备9领域条件的sum = img.getpixel((x - 1, y - 1)) \+ img.getpixel((x - 1, y)) \+ img.getpixel((x - 1, y + 1)) \+ img.getpixel((x, y - 1)) \+ cur_pixel \+ img.getpixel((x, y + 1)) \+ img.getpixel((x + 1, y - 1)) \+ img.getpixel((x + 1, y)) \+ img.getpixel((x + 1, y + 1))if color:return sumelse:return 9 - sumdef collect_noise_point(img, color):'''收集所有的噪点'''noise_point_list = []for x in range(img.width):for y in range(img.height):res_9 = sum_9_region(img, x, y, color)# 降低噪声点要求, 4if (0 < res_9 < 4) and img.getpixel((x, y)) == color:  # 找到孤立点pos = (x, y)noise_point_list.append(pos)return noise_point_listdef remove_noise_pixel(img, noise_point_list, color):'''根据噪点的位置信息,消除二值图片的color点噪声'''for item in noise_point_list:img.putpixel((item[0], item[1]), 1-color)def blacktowhite(fonts_img):"""将图片黑白转换"""res = []for img in fonts_img:for x in range(img.width):for y in range(img.height):value = img.getpixel((x, y))img.putpixel((x, y), 1-value)# img.show()res.append(img)return resdef find_min_edge_hang(data1):"""找到data1主体的最小边界长度,一维数组"""index_1 = 0index_last1 = 0for i in range(len(data1)):if data1[i] == 1:index_1 = ibreakfor i in range(len(data1)):if data1[len(data1) - 1 - i] == 1:index_last1 = len(data1) - 1 - ibreakreturn index_1, index_last1def find_min_edge(data1):"""找到data1主体的最小边界长度,data1是二维数组"""edge_left = []edge_right = []for hang in data1:index, index_last = find_min_edge_hang(hang)edge_left.append(index)edge_right.append(index_last)# print(min(edge_left), max(edge_right))return min(edge_left), max(edge_right)def ont_to_two(data, lie):"""将行存储一维数组转化为每行lie个元素的二维数组"""two = []i = 0while i < len(data):hang = data[i: i+lie]i += lietwo.append(hang)# print(hang)return twodef cut_black(img):"""将图片的左右黑色部分去掉"""# print(img)edge_left, edge_right = find_min_edge(ont_to_two(list(img.getdata()), img.width))img = img.crop((edge_left, 0, edge_right, img.height))# img.show()return imgdef cut_black(img):"""将图片的左右黑色部分去掉"""# print(img)edge_left, edge_right = find_min_edge(ont_to_two(list(img.getdata()), img.width))img = img.crop((edge_left, 0, edge_right, img.height))# img.show()return imgdef calc_prop(point):return pow(point[0]-point[1],2) + pow(point[0]-point[2],2) + pow(point[1]-point[2],2)def descriptive_mode(list):# [第1步] 获取 变量值列表 中 所有不重复的变量值list_set=set(list) #将List转化为集合,去除重复元素# [第2步] 获取 所有不重复的变量值 在 变量值列表 中的 出现频数frequency_dict={} #定义存储 所有不重复的变量值 出现频数 的 哈希表for i in list_set: #遍历每一个list_set的元素(即去除重复元素后的集合),得到每个元素在原始集合中包含的数量:count(i)frequency_dict[i]=list.count(i)#向frequency_dic中添加key-value对象:dict[key]=value# [第3步] 获取 变量值列表 中 出现频数 最高的数值的 出现频数if len(frequency_dict.items()) <= 0:max_frequency = 1else:max_frequency=max(frequency_dict.values())mode_list=[] #定义存储 出现频数 最高的变量值的 数组if max_frequency==1: # 若最高的 出现频数 为1,则没有众数return mode_list# [第4步] 找出 所有不重复的变量值 中 出现频数 最高的变量值for key,value in frequency_dict.items():#遍历frequency_dic中每一个key-value对象if value==max_frequency:mode_list.append(key) #将 出现频数 最高的变量值添加到 数组return mode_list# 对图片进行统一化处理
def get_thum(image, size=(48, 48), greyscale=False):# 利用image对图像大小重新设置, Image.ANTIALIAS为高质量的image = image.resize(size, Image.ANTIALIAS)if greyscale:# 将图片转换为L模式,其为灰度图,其每个像素用8个bit表示image = image.convert('L')return image# 计算图片的余弦距离
def image_similarity_vectors_via_numpy(image1, image2):image1 = get_thum(image1)image2 = get_thum(image2)images = [image1, image2]vectors = []norms = []for image in images:vector = []for pixel_tuple in image.getdata():vector.append(average(pixel_tuple))vectors.append(vector)# linalg=linear(线性)+algebra(代数),norm则表示范数# 求图片的范数??norms.append(linalg.norm(vector, 2))a, b = vectorsa_norm, b_norm = norms# dot返回的是点积,对二维数组(矩阵)进行计算res = dot(a / a_norm, b / b_norm)return restotal_value = 0.0
all_data = []
idx = 0
while idx < 5:try:# now_time = int(time.time())cookie_tag = 'Hm_lpvt_c99546cf032aaa5a679230de9a95c7db=%d' % (int(time.time()), )headers['cookie'] = orig_cookie + cookie_tagurl = 'https://match.yuanrenxue.com/api/match/8_verify'ret_data = requests.get(url=url, headers=headers, timeout=10.0, verify= False, )words_uni = [item.replace('<p>','').replace('</p>','') for item in ret_data.text.split('---')[1:5]]words = [item.replace('<p>','').replace('</p>','').encode('latin-1').decode('unicode_escape') for item in ret_data.text.split('---')[1:5]]words_pic = base64.b64decode(ret_data.text.split('data:image/jpeg;base64,')[1].split('\\"')[0])# print(words_uni)pic_name = "%05d_%s" % (idx, ''.join(words))with open("./src_pic/%s.png" % (pic_name, ), "wb") as file:file.write(words_pic)words_points = []# 获取字库中字体for idy in range(len(words_uni)):word = words_uni[idy]rtext = font.render(chr(int('0x' + word[2:], 16)), True, (0, 0, 0), (255, 255, 255))pygame.image.save(rtext, 'dst_pic/r_%d.png' % (idy+1))word_points = cv.imread('dst_pic/r_%d.png' % (idy+1))word_points = word_points[20:88, ]cv.imwrite("dst_pic/u_%d.png" % (idy + 1), word_points)image = Image.open("dst_pic/u_%d.png" % (idy + 1))imgry = image.convert('L')# word_points = cv.cvtColor(word_points, cv.COLOR_BGR2GRAY)table = get_bin_table()out = imgry.point(table, '1')out = blacktowhite([out, ])[0]out = cut_black(out)# out = out[, :-6]out.save("dst_pic/u_%d.png" % (idy + 1), "png")# word_points = cv.imread('dst_pic/r_%d.png' % (idy + 1))# words_points.append(word_points)# 切分图片nparr = np.fromstring(words_pic, np.uint8)words_img = cv.imdecode(nparr, cv.IMREAD_COLOR)fonts_points = []for idy in range(3):for idz in range(3):word_img = words_img[idy*100:(idy+1)*100, idz*100:(idz+1)*100]cv.imwrite("src_pic/%d.png" % (idy * 3 + idz + 1), word_img)# 去除背景和噪音props = []for ida in range(2, 12):for idb in range(2, 12):ret_prop = calc_prop(word_img[ida][idb])bias = min([990000] + [abs(ret_prop - prop) for prop in props])# print(bias)if len(props) == 0 or (bias > 300 and len(props) < 3):props.append(ret_prop)for ida in range(len(word_img)):for idb in range(len(word_img[0])):ret_prop = calc_prop(word_img[ida][idb])bias = min([abs(ret_prop - prop) for prop in props])# print(bias)if bias < 500:word_img[ida][idb] = [255, 255, 255]# else:#    word_img[ida][idb] = [0, 0, 0]# if bias>10000:#    pixel_points[idx][idy] = [0, 0, 0]word_img = word_img[14:88, 26:100]# 抽样,再剔除all_props = []# 去除背景和噪音for idc in range(4):for idd in range(4):props = []for ida in range(2, 12):for idb in range(2, 12):ret_prop = calc_prop(word_img[idc * 18 + ida][idd * 18 + idb])bias = min([990000] + [abs(ret_prop - prop) for prop in props])# print(bias)if len(props) == 0 or (bias > 300 and len(props) < 3):props.append(ret_prop)if ret_prop != 0:all_props.append((ret_prop))# print(props)ret_data = descriptive_mode(all_props)# print(ret_data)for ida in range(len(word_img)):for idb in range(len(word_img[0])):ret_prop = calc_prop(word_img[ida][idb])if abs(ret_prop-ret_data) > 100:word_img[ida][idb] = [255, 255, 255]else:word_img[ida][idb] = [0, 0, 0]# 继续额外操作cv.imwrite("src_pic/n_%d.png" % (idy * 3 + idz + 1), word_img)image = Image.open("src_pic/n_%d.png" % (idy * 3 + idz + 1))imgry = image.convert('L')# word_points = cv.cvtColor(word_points, cv.COLOR_BGR2GRAY)table = get_bin_table()out = imgry.point(table, '1')out = blacktowhite([out, ])[0]out = cut_black(out)out.save("src_pic/n_%d.png" % (idy * 3 + idz + 1), "png")# word_img = cv.imread("src_pic/n_%d.png" % (idy * 3 + idz + 1))# fonts_points.append(word_img)answer = []for idz in range(4):cosin = 0.0lable_idk = -1for idk in range(9):# img1_path = "dst_pic/u_%d.png" % (idx+1)# img2_path = "src_pic/n_%d.png" % (idy+1)# result1 = classify_hist_with_split(img1_path, img2_path)# print("u_%d->n_%d相似度为:%.2f%%" % (idx+1, idy+1, result1 * 100))# img1 = cv2.imread("dst_pic/z_%d.png" % (idx+1))# img2 = cv2.imread("src_pic/v_%d.png" % (idy+1))# hash1 = pHash(img1)# hash2 = pHash(img2)# n = cmpHash(hash1, hash2)# print("u_%d->n_%d相似度为:%.2f%%" % (idx + 1, idy + 1, n * 100))image1 = Image.open("dst_pic/u_%d.png" % (idz+1))image2 = Image.open("src_pic/n_%d.png" % (idk+1))# image1 = words_points[idx]# image2 = fonts_points[idy]update_cosin = image_similarity_vectors_via_numpy(image1, image2)# print("u_%d->n_%d相似度为:%.2f%%" % (idx + 1, idy + 1, cosin * 100))if update_cosin > cosin:cosin = update_cosinlable_idk = idk_answer = 30*(10*int(lable_idk/3)+random.randint(4,6)-1) + (int(lable_idk%3)*10+random.randint(4,6)-1)answer.append(str(int(_answer))+'|')# print("u_%d相似度最大为%d,值%.2f%%" %(idx+1, lable_idk+1, update_cosin*100, ))url1 = 'https://match.yuanrenxue.com/api/match/8?page=%d&answer=%s' % (idx + 1, parse.quote(''.join(answer)),)ret_data1 = requests.get(url=url1, headers=headers, timeout=10.0, verify=False, ).json()for item in ret_data1['data']:all_data.append(item['value'])idx += 1except Exception as e:print(e)time.sleep(2.0)total_value = descriptive_mode(all_data)print(total_value[0])

 

 

这篇关于猿人学第八题:验证码 图文点选 识别新思路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/386890

相关文章

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

springboot security验证码的登录实例

《springbootsecurity验证码的登录实例》:本文主要介绍springbootsecurity验证码的登录实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录前言代码示例引入依赖定义验证码生成器定义获取验证码及认证接口测试获取验证码登录总结前言在spring

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码