Verilog | 卷积码实现

2023-11-11 02:20
文章标签 实现 verilog 卷积码

本文主要是介绍Verilog | 卷积码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、卷积码(convolution code)

卷积码是一种差错控制编码,由P.Elias于1955年发明。因为数据与二进制多项式滑动相关故称卷积码。卷积码在通信系统中应用广泛,如IS-95,TD-SCDMA,WCDMA,IEEE 802.11及卫星等系统中均使用了卷积码。以(n,k,m)或者(n,k,L)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= L为编码约束度m称为约束长度。卷积码将k元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。

当输入信息比特数为 1 位,约束长度为 K 时,可以画出卷积编码器如图所示:

卷积码可以用解析式表示法、图形表示法等方式来表示,而图形表示法又可分为状态图、树图、网络图等方式。

其中最重要的就是网络图。

网络图横坐标表示时刻纵坐标表示状态,状态数与约束长度相关。实线表示输入 0 所走分支,虚线表示输入 1 所走分支,线上的数字表示输出的码字。任意给定一个信息序列,网络图中就存在一条特定的路径。这就是研究卷积码最大似然译码维特比算法的重要工具。

通常卷积码编码器开始工作前都要进行初始化,按编码器的初始状态的不同可以分为两类:

末尾补零卷积码(Tail-bits):

通常卷积码编码器开始工作时都要进行初始化,编码开始前将编码器的所有寄存器单元都进行清零处理。而在编码结束时,需要添加0到码流末尾(Tailed Termination),使编码器状态归零, 这即是末尾补零卷积码。相对于编码比特而言,添加的末尾比特增加了编码开销。

咬尾卷积码(Tail biting):

咬尾卷积编码是一种特殊的卷积编码,它通过将编码器的移位寄存器的初始值设置为输入流的末尾比特值,使得移位寄存器的初始和最终状态相同。编码器开始工作时要进行特殊的初始化,将输入信息比特的最后m个比特依次输入编码器的寄存器中,当编码结束时,编码器的结束状态与初始状态相同。由于这个编码方法没有出现尾比特,因此称为咬尾编码。 咬尾编码减少了尾比特的编码开销。对于咬尾编码方法,在译码过程中,由于编码器的初始状态和结尾状态是未知的,因此就需要增加一定的译码复杂度,才能确保好的译码性能。和普通的卷积编码相比,咬尾的方案最大的优点是克服了编码时的码率损失,并且适合迭代译码,不过付出的代价是译码复杂度的增加。

二、代码实现

//使用末尾补零卷积码的编码方式,代码还不够简洁,使用移位寄存器或许会更好一些,,,/******************************************************/module viterbi_encode9(X,Y,Clock,Reset); 
/******************************************************/input X, Clock, Reset;output [1:0] Y; wire [1:0] Yt;
wire X, Clock, Reset;wire [8:0] PolyA, PolyB;
wire [8:0] wA, wB, ShReg;//   assign   PolyA = 9'b111_101_011;
//   assign   PolyB = 9'b101_110_001;assign   PolyA = 9'b110_101_111;assign   PolyB = 9'b100_011_101;assign wA = PolyA & ShReg;assign wB = PolyB & ShReg;assign ShReg[8] = X;pDFF dff7(ShReg[8], ShReg[7], Clock, Reset);pDFF dff6(ShReg[7], ShReg[6], Clock, Reset);   pDFF dff5(ShReg[6], ShReg[5], Clock, Reset);pDFF dff4(ShReg[5], ShReg[4], Clock, Reset);pDFF dff3(ShReg[4], ShReg[3], Clock, Reset);pDFF dff2(ShReg[3], ShReg[2], Clock, Reset);pDFF dff1(ShReg[2], ShReg[1], Clock, Reset);pDFF dff0(ShReg[1], ShReg[0], Clock, Reset);assign Yt[1] = wA[0] ^ wA[1] ^ wA[2] ^ wA[3] ^ wA[4] ^ wA[5] ^ wA[6] ^ wA[7] ^ wA[8];assign Yt[0] = wB[0] ^ wB[1] ^ wB[2] ^ wB[3] ^ wB[4] ^ wB[5] ^ wB[6] ^ wB[7] ^ wB[8];pDFF dffy1(Yt[1], Y[1], Clock, Reset);pDFF dffy0(Yt[0], Y[0], Clock, Reset);
endmodule/******************************************************/module pDFF(DATA,QOUT,CLOCK,RESET);
/******************************************************/parameter WIDTH = 1; input [WIDTH-1:0] DATA;
input CLOCK, RESET;output [WIDTH-1:0] QOUT;reg [WIDTH-1:0] QOUT;always @(posedge CLOCK or negedge RESET)if (~RESET) QOUT <= 0; //active low resetelse QOUT <= DATA;endmodule

参考:

维特比译码器(Viterbi Decoder)硬件架构(一)–卷积码及编解码算法介绍

Encoding/Decoding - Presentation of Convolutional Code

这篇关于Verilog | 卷积码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/386881

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义