基于内容的电影推荐:物品冷启动处理

2023-11-10 23:20

本文主要是介绍基于内容的电影推荐:物品冷启动处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于内容的电影推荐:物品冷启动处理

    • 基于内容的电影推荐:物品冷启动处理
        • word2vec原理简介
        • Word2Vec
          • 两个重要模型:CBOW和Skip-Gram
        • Word2Vec使用
        • Doc2Vec使用

基于内容的电影推荐:物品冷启动处理

利用Word2Vec可以计算电影所有标签词之间的关系程度,可用于计算电影之间的相似度

word2vec原理简介
  • word2vec是google在2013年开源的一个NLP(Natural Language Processing自然语言处理) 工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。

  • one-hot vector VS. word vector

    • 用向量来表示词并不是word2vec的首创
    • 最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。
    • 比如下面5个词组成词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)同样的道理,词"Woman"的词向量就是(0,0,0,1,0)。

在这里插入图片描述

  • one hot vector的问题

    • 如果词汇表非常大,如达到万级别,这样每个词都用万维的向量来表示浪费内存。这样的向量除了一个位置是1,其余位置全部为0,表达效率低(稀疏),需要降低词向量的维度
    • 难以发现词之间的关系,以及难以捕捉句法(结构)和语义(意思)之间的关系
    • Dristributed representation可以解决One hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度一般需要我们在训练时指定。
    • 比如下图我们将词汇表里的词用"Royalty(王位)",“Masculinity(男性气质)”, "Femininity(女性气质)"和"Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)。当然在实际情况中,我们并不一定能对词向量的每个维度做一个很好的解释。

在这里插入图片描述

Word2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logginglogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)sentences = list(movie_profile["profile"].values)model = gensim.models.Word2Vec(sentences, window=3, min_count=1, iter=20)while True:words = input("words: ")  # actionret = model.wv.most_similar(positive=[words], topn=10)print(ret)

Doc2Vec是建立在Word2Vec上的,用于直接计算以文档为单位的文档向量,这里我们将一部电影的所有标签词,作为整个文档,这样可以计算出每部电影的向量,通过计算向量之间的距离,来判断用于计算电影之间的相似程度。

这样可以解决物品冷启动问题

Doc2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npfrom pprint import pprintdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logging
from gensim.models.doc2vec import Doc2Vec, TaggedDocumentlogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)documents = [TaggedDocument(words, [movie_id]) for movie_id, words in movie_profile["profile"].iteritems()]# 训练模型并保存
model = Doc2Vec(documents, vector_size=100, window=3, min_count=1, workers=4, epochs=20)
from gensim.test.utils import get_tmpfile
fname = get_tmpfile("my_doc2vec_model")
model.save(fname)words = movie_profile["profile"].loc[6]
print(words)
inferred_vector = model.infer_vector(words)
sims = model.docvecs.most_similar([inferred_vector], topn=10)
print(sims)

加油!

感谢!

努力!

这篇关于基于内容的电影推荐:物品冷启动处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/385946

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说