空间统计学:快速理解反距离加权法(IDW)

2023-11-10 22:30

本文主要是介绍空间统计学:快速理解反距离加权法(IDW),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

空间插值

说到反距离加权法,首先我们要先了解空间插值的概念

对于一个平面,我们并不能获取所有区域的精确信息,所以一般情况下,我们通过采样的方式只获取部分点的信息。然后通过空间插值,计算出一个区域所有的数据

d791a7191d254d26b72f4fd2ddf7c43a.png

左图我采样了部分点的高程数据,右图我通过这部分高程数据,通过空间插值计算出所有区域的数据。

具体插值原理是什么呢,见下图

73d23302c11746c0aa4851c3b5bbcded.png

 9和10是数据已知的点,那么我通过两点的数据,结合它们之间的距离,我就可以估算出红点的具体数据。

对于空间上的点来说,未知值的点与样本点之间的距离决定了其最终值的估计。

那么具体他是怎么结合距离数据和本身的值计算位置数据的呢?常用的插值方法包括反距离加权法(IDW)、克里金(Kriging)等。那么本篇文章就是讲解其中之一的反距离加权法。

反距离加权法(IDW)

反距离加权法(Inverse Distance Weighting, IDW)是一种常见的空间插值方法,常用于将已知分散的样点数据插值为连续的地表或地下场景。下面是反距离加权法的简要步骤:

  1. 确定待插值位置和已知样点位置。
  2. 根据待插值位置与已知样点的欧几里得距离(或其他距离指标),计算每个样点的权重,一般权重与距离的倒数成正比。
  3. 使用每个样点的权重对其函数值进行加权平均,得到插值结果。

下面详细解释这三个步骤:

1. 确定待插值位置和已知样点位置

首先我们需要确定待插值位置的坐标和范围,以及已知样点的坐标和数值。

2. 计算权重

对于每个待插值位置,我们需要计算它与所有已知样点的距离,并将距离转化为权重。一般来说,样点与待插值位置之间的欧几里得距离越小,样点对插值结果的影响就越大,因此权重与距离成反比,可使用以下公式计算:

19978f4216684084828008426447332f.png

其中 wi​ 是第 i 个样点的权重,di​ 是该样点与待插值位置的距离,p 是一个可调参数,一般取值为 2 (欧几里得距离)或 3 (曼哈顿距离),也可以通过交叉验证等方法来确定最优的 p 值。 

3. 加权平均求解

计算出每个已知样点的权重后,我们可以将它们的函数值进行加权平均,得到待插值位置的函数值。具体地,设已知样点的个数为 N,第 i 个样点的坐标为 (xi​,yi​),权重为 wi​,函数值为 zi​,则待插值位置的函数值z(x,y) 可以通过以下公式计算:

e5f69fd28fea4e69965721bf799f7642.png

 其中分子为各样点函数值乘以对应权重的总和,分母为权重之和,它们的比值即为插值结果。

反距离加权法的优缺点

反距离加权法的主要优点是简单易用,而且在样点分布相对均匀的情况下效果较好。它也有一些缺点,例如插值结果表现出的锯齿状特征、函数值抖动等问题。为解决这些问题,通常需要采用其他空间插值方法,例如径向基函数插值(Radial Basis Function, RBF)、克里金插值等。

代码实现

使用 Python 的 Matplotlib 库生成反距离加权法(IDW)插值示意图

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf# 构造样点数据
np.random.seed(0)
x = np.random.rand(20) * 10 - 5
y = np.random.rand(20) * 10 - 5
z = np.sin(np.sqrt(x**2 + y**2))
xi, yi = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))# 计算插值结果
rbf = Rbf(x, y, z, function='inverse')
zi = rbf(xi, yi)# 绘制示意图
plt.imshow(zi, cmap='rainbow', extent=(-5, 5, -5, 5))
plt.colorbar()
plt.scatter(x, y, c=z, cmap='rainbow', edgecolors='black', linewidths=1)
plt.title('Inverse Distance Weighting Interpolation')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()

 解释代码:

第一部分:

当我们使用反距离加权法对二维数据进行插值时,需要确定已知样点的位置和对应数值,以及待插值位置的坐标。内容包括通过numpy库生成20个随机的二维坐标点,并在这些点上计算对应的函数值。在x轴和y轴上各取50个均匀分布的点,形成二维网格,作为插值结果的横纵坐标。

第二部分:

利用scipy库中的Rbf函数进行插值,并指定插值函数为inverse distance weighting(IDW)。

第三部分:

将插值结果用彩虹色表现出来,并添加颜色条、散点图等元素,以便更好地展示

结果

13fbbaf2f35a4acb921fc70a8e97f75b.png

其中:

  • 圆点表示已知样点,每个样点都有一个数值。
  • 彩色网格表示未知区域,我们需要计算这些位置的数值。
  • 网格上的每个颜色块表示对应位置的插值结果,颜色越深表示对应位置的数值越大。

通过反距离加权法,可以计算未知区域内每个网格点的数值。以左上角网格点为例,其数值可通过对已知样点进行加权平均得到,权重与样点间的距离成反比,距离越近的样点权重越大。最终得到的插值结果可用于制图、分析等用途。

在该图中,我们可以观察到:

  • 插值结果整体呈现出类似于圆形的形状,与样点分布的形状有关。
  • 在样点位置附近,插值结果的颜色更深,数值更大;而在远离样点的位置,插值结果的颜色较浅,数值较小。
  • 样点之间的插值结果呈现出类似于“锯齿状”的形态,在实际应用过程中需要注意。

总的来说,反距离加权法是一种简单而有效的空间插值方法,适用于各种数据类型和应用领域。

这篇关于空间统计学:快速理解反距离加权法(IDW)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/385688

相关文章

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

MySQL表空间结构详解表空间到段页操作

《MySQL表空间结构详解表空间到段页操作》在MySQL架构和存储引擎专题中介绍了使用不同存储引擎创建表时生成的表空间数据文件,在本章节主要介绍使用InnoDB存储引擎创建表时生成的表空间数据文件,对... 目录️‍一、什么是表空间结构1.1 表空间与表空间文件的关系是什么?️‍二、用户数据在表空间中是怎么

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2