B-Trees|CS 61B Data Structures, Spring 2019

2023-11-10 18:10

本文主要是介绍B-Trees|CS 61B Data Structures, Spring 2019,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B-Trees

  • B-Trees
    • BST Tree Height
    • BST(binary search tree) Performance ,Height, Depth
    • B-trees / 2-3 trees /2-3-4 trees
      • Problom with Binary search tree
      • solution:B Tree
      • The Real Name for Splitting Trees is “B Trees”
      • B-Tree Bushiness Invariants
      • B-Tree Runtime Analysis
        • Height of a B-Tree with Limit L(L: Max number of items per node.)
        • Runtime for contains
          • Runtime for contains:
          • Runtime for add
    • Summary

B-Trees

*** (Algs 424-431, 432-448 (extra))***

BST Tree Height

The difference in runtime between a worst-case tree and best-case tree is very dramati

  • Worst case: Θ(N)
  • Best-case: Θ(logN) (where N is number of nodes in the tree)
    在这里插入图片描述

the tree on the left side called “bushy”,the tree on the right hand called “spindly”(n its basically a linked list and the runtime is linear)

BigO is not equivalent to worst case! Remember, BigO is an upper bound,Thus, even though we said the worst-case runtime of a BST is Θ(N), it also falls under O(N ).(意味着runtime的增长速度小于等于N)

BST(binary search tree) Performance ,Height, Depth

  • depth: the number of links between a node and the root.
  • height: the lowest depth of a tree.
  • average depth: average of the total depths in the tree. You calculate this by taking :
    在这里插入图片描述 where d is depth and n is number of nodes at that depth.

for exampel:

在这里插入图片描述

average depth of the exampel: (0x1 + 1x2 + 2x4 + 3x6 + 4x1)/(1+2+4+6+1) = 2.35

The height of the tree determines the worst-case runtime, because in the worst case the node we are looking for is at the bottom of the tree.
The average depth determines the average-case runtime.

Random trees in the real world have Θ(log N) average depth and height.
In other words: Random trees are bushy, not spindly.but in same cases we couldn’t always insert items randomly in our tree,in other world we may get a spindly tree.

In the next chapter we will learn about a tree that always maintains its balance(always get the tree like a bushy tree)

B-trees / 2-3 trees /2-3-4 trees

Problom with Binary search tree

The problem with BST’s is that we always insert at a leaf node. This is what causes the height to increase.

假设有四个点k,v,y,z.,选择k为root,因为其余三个点均比k大,最后会形成一个bushy tree,倒是搜索一个点所需的时间是Θ(N)而不是Θ(logN)
Θ(logN)比Θ(N)要小很多
在这里插入图片描述

solution:B Tree

example for B Tree:

The process of adding a node to a 2-3-4 tree(每个点最多可以包含三个item) is:

  1. We still always inserting into a leaf node, so take the node you want to insert and traverse down the tree with it, going left and right according to whether or not the node to be inserted is greater than or smaller than the items in each node.
  2. After adding the node to the leaf node, if the new node has 4 nodes, then pop up the middle left node and re-arrange the children accordingly.(若叶子节点现在有4个item,我们因该将左边第二个item移到父节点,并将剩余的三个item按照大小一次拆分)
    在这里插入图片描述
  3. If this results in the parent node having 4 nodes, then pop up the middle left node again, rearranging the children accordingly.
  4. Repeat this process until the parent node can accommodate or you get to the root(若根节点中也有四个item,则把左边第二个拿出来作为新的root)
    在这里插入图片描述
  • more exampel:
    在这里插入图片描述
    在这里插入图片描述

Observation: Splitting-trees have perfect balance:
If we split the root, every node gets pushed down by exactly one level.
If we split a leaf node or internal node, the height doesn’t change

The Real Name for Splitting Trees is “B Trees”

Splitting tree is a better name, but I didn’t invent them, so we’re stuck with their real name: B-trees.

  • B-trees of order L=3 (每个节点可以有三个item) are also called a 2-3-4 tree or a 2-4 tree.
    • “2-3-4” refers to the number of children that a node can have, e.g. a 2-3-4 tree node may have 2, 3, or 4 children.
  • B-trees of order L=2 are also called a 2-3 tree.

B-Trees are most popular in two specific contexts:
Small L (L=2 or L=3):
Used as a conceptually simple balanced search tree (as today).
L is very large (say thousands).
Used in practice for databases and filesystems (i.e. systems with very large records).

B-Tree Bushiness Invariants

Because of the way B-Trees are constructed, we get two nice invariants:

  • All leaves must be the same distance from the source.
  • A non-leaf node with k items must have exactly k+1 children.
  • Example: The tree given below is impossible.
    and [5 6 7]) are a different distance from the source.
    Non-leaf node [2 3] has two items but only only one child. Should have three children.
    在这里插入图片描述

These invariants guarantee that our trees will be bushy.

B-Tree Runtime Analysis

Height of a B-Tree with Limit L(L: Max number of items per node.)

L=2

  • best case
    在这里插入图片描述
  • worst case
    在这里插入图片描述

Height: Between between best and worst case is ~logL+1(N) and ~log2(N),Overall height is therefore Θ(log N).

Runtime for contains
Runtime for contains:
  • Worst case number of nodes to inspect: H(Hight)
  • Worst case number of items to inspect per node: L
  • Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Runtime for add

Runtime for add:

  • Worst case number of nodes to inspect: H + 1
  • Worst case number of items to inspect per node: L
  • Worst case number of split operations: H + 1(若在leaf增加一个item后,超过该节点能承载的最大ITEM数,需要将左边第二个节点向上移动,最坏的情况是,当所有节点中均装有L个ITEM,此时添加一个新item,会导致某个item向上移动的操作一直进行,知道出现一个新的root)
  • 在这里插入图片描述

Overall runtime: O(HL)

Since H = Θ(log N), overall runtime is O(L log N).
Since L is a constant, runtime is therefore O(log N).

Bottom line: contains and add are both O(log N).

Summary

  • BSTs have best case height Θ(log N), and worst case height Θ(N).

  • Big O is not the same thing as worst case!

  • B-Trees are a modification of the binary search tree that avoids Θ(N) worst case.

  • Nodes may contain between 1 and L items.

  • contains works almost exactly like a normal BST.

  • add works by adding items to existing leaf nodes.

  • If nodes are too full, they split.

  • Resulting tree has perfect balance. Runtime for operations is O(log N).

  • Have not discussed deletion. See extra slides if you’re curious.

  • Have not discussed how splitting works if L > 3 (see some other class).

  • B-trees are more complex, but they can efficiently handle ANY insertion order.

这篇关于B-Trees|CS 61B Data Structures, Spring 2019的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384396

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏