机器学习在物联网中有何应用?首先要搞清楚它和数据分析的区别

本文主要是介绍机器学习在物联网中有何应用?首先要搞清楚它和数据分析的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

qlpr8tigq2vmrza8.png!heading

 

机器学习(ML)和物联网(IoT)现在都非常流行。关于机器学习和物联网有大量的关注和炒作,我们可能很难穿过噪音去了解它的实际价值。

数据分析vs.机器学习

关于机器学习的炒作越来越多,许多组织都会希望在他们的业务中多少使用一些机器学习。可是绝大多数时候都不能如此。

后面我将更深入地探讨机器学习的价值,但首先我要说,机器学习需要大量数据。这可能意味着改进流程、降低成本、为客户创造更好的体验,或者开辟新的商业模式。

事实是,大多数组织可以从传统的数据分析中获得许多好处,而不需要更复杂的机器学习的方法。

传统的数据分析在解释数据这方面做得很棒。你可以依照过去发生的事件或今天发生的情况生成报告或模型,吸取有用的见解来应用于组织之中。

数据分析可以帮助量化和跟踪目标,实现更智能的决策,然后随着时间的推移提供衡量成功的手段。

那么机器学习在什么时候有价值?

典型的传统数据分析的数据模型通常是静态的,它在处理快速变化和非结构化的数据方面的使用是有局限性的。当涉及到物联网时,通常需要确定几十个传感器输入和迅速产生数百万个数据点的外部因素之间的相关性。

传统的数据分析需要基于过去数据和专家意见的模型来建立变量之间的关系,而机器学习是从结果变量(例如节能)出发,然后自动寻找预测变量及其相互作用。

一般来说,当你知道你想要什么,但却并不知道做出该决策所需要的重要的输入变量的时候,机器学习是有价值的。所以你给了机器学习算法一个目标,然后它会从数据中“学习”到哪些因素对于实现这一目标很重要。

Google去年在其数据中心应用机器学习就是一个很好的例子。数据中心需要保持低温,因此它们需要大量的能源来让冷却系统正常工作(或者你可以直接将它们扣入海洋中)。这对于Google来说是巨大的成本,所以目标是通过机器学习来提高效率。

因为有一百二十个变量影响着冷却系统(风扇、水泵转速、窗等),使用传统的方法来建造模型将是一个非常艰巨的任务。而Google应用机器学习,将整体能源消耗降低了百分之十五。这将为Google在未来几年节省数亿美元。

此外,机器学习对于准确预测未来事件而言也很有价值。鉴于使用传统数据分析所构建的数据模型是静态的,随着越来越多的数据被捕获和吸收,机器学习算法会随着时间的推移而不断改进。这意味着机器学习算法可以做出一些预测,将实际发生的情况与其预测的情况进行比较,然后进行调整,从而变得更加准确。

通过机器学习实现的预测分析对于许多物联网应用来说都是非常有价值的。我们来看几个具体的例子。

物联网中的应用

工业应用的成本节约

预测的能力在工业环境中非常有用。通过从机器内部或表面上的多个传感器绘制数据,机器学习算法可以“学习”机器的典型特征,然后检测异常状况。

一个名叫Augury的公司做的正是这个事情,它在设备上安装了振动和超声波传感器:

“收集的数据被发送到我们的服务器中,在那里与从该机器收集到的原来的数据以及从类似机器收集到的数据进行比较。我们的平台可以检测到最微小的变化,并在故障发生时发出警告。这个分析是实时完成的,其结果会在几秒钟内显示在技术人员的智能手机上。”

预测机器何时需要维护是非常有价值的,它将节省数百万美元的成本。Goldcorp就是一个很好的例子,它是一家采矿公司,使用巨大的车辆来运送材料。

当这些运输车辆出现故障时,将导致Goldcorp每天损失200万美元。Goldcorp正在使用机器学习预测机器需要维护的时间,准确度超过百分之九十,这节省了巨大的成本。

塑造个人体验

其实我们都熟悉我们日常生活中的机器学习。Amazon和Netflix都在使用机器学习来了解我们的偏好,并为用户提供更好的体验。这可能意味着它会向你推荐你可能喜欢的产品或推荐一些相关的电影和电视节目。

同样的,在物联网的机器学习中,它能将我们的环境塑造成我们个人所喜爱的这一事实将非常有价值。Nest Thermostat是一个很好的例子,它使用机器学习来了解你对冷热度的偏好,确保当你下班回家或在早晨醒来时,房间的温度是合适的。

更多

上面所述的几个例子只是无限的可能性中的一小部分,但它们很重要,因为它们是现在正在运行的物联网中的机器学习的有用的应用程序。

但总的来说…

我们只抓到了皮毛

未来几年将继续连接到互联网的数十亿个传感器和设备将生成指数级的更多的数据。正如我在上一篇文章中讨论过的那样,数据的巨大增长将带来机器学习的巨大进步,并为我们带来无数获得收益的机会。

我们不仅可以预测机器需要维护的时间,还可以预测需要维护我们自己的时间。机器学习将应用于我们的可穿戴设备,以了解我们的基础状况,并在维持我们身体的重要器官出现异常时作出判断,必要时,会自动打电话给医生或救护车。

除了个体之外,我们还可以使用这个健康数据来查看整个人群的身体状况的整体趋势,预测疾病的爆发并主动解决健康问题。

我们还可以在事故发生之前预测事故和犯罪行为。来自智能城市的噪音传感器、摄像机、甚至智能垃圾箱的数据都可以传送到机器学习算法中,以发现事故或犯罪行为发生的征兆,为执法部门提供强有力的工具(当然这将涉及到一些隐私问题)。

尽管机器学习和物联网都处于炒作的高潮,但未来的应用和可能性值得这样的炒作。我们真的只抓到了所有可能性的皮毛。

翻译来自:虫洞翻翻   译者ID:盖里君   编辑:郝鹏程

机器学习(ML)和物联网(IoT)现在都非常流行。关于机器学习和物联网有大量的关注和炒作,我们可能很难穿过噪音去了解它的实际价值。

数据分析vs.机器学习

关于机器学习的炒作越来越多,许多组织都会希望在他们的业务中多少使用一些机器学习。可是绝大多数时候都不能如此。

后面我将更深入地探讨机器学习的价值,但首先我要说,机器学习需要大量数据。这可能意味着改进流程、降低成本、为客户创造更好的体验,或者开辟新的商业模式。

事实是,大多数组织可以从传统的数据分析中获得许多好处,而不需要更复杂的机器学习的方法。

传统的数据分析在解释数据这方面做得很棒。你可以依照过去发生的事件或今天发生的情况生成报告或模型,吸取有用的见解来应用于组织之中。

数据分析可以帮助量化和跟踪目标,实现更智能的决策,然后随着时间的推移提供衡量成功的手段。

那么机器学习在什么时候有价值?

典型的传统数据分析的数据模型通常是静态的,它在处理快速变化和非结构化的数据方面的使用是有局限性的。当涉及到物联网时,通常需要确定几十个传感器输入和迅速产生数百万个数据点的外部因素之间的相关性。

传统的数据分析需要基于过去数据和专家意见的模型来建立变量之间的关系,而机器学习是从结果变量(例如节能)出发,然后自动寻找预测变量及其相互作用。

一般来说,当你知道你想要什么,但却并不知道做出该决策所需要的重要的输入变量的时候,机器学习是有价值的。所以你给了机器学习算法一个目标,然后它会从数据中“学习”到哪些因素对于实现这一目标很重要。

Google去年在其数据中心应用机器学习就是一个很好的例子。数据中心需要保持低温,因此它们需要大量的能源来让冷却系统正常工作(或者你可以直接将它们扣入海洋中)。这对于Google来说是巨大的成本,所以目标是通过机器学习来提高效率。

因为有一百二十个变量影响着冷却系统(风扇、水泵转速、窗等),使用传统的方法来建造模型将是一个非常艰巨的任务。而Google应用机器学习,将整体能源消耗降低了百分之十五。这将为Google在未来几年节省数亿美元。

此外,机器学习对于准确预测未来事件而言也很有价值。鉴于使用传统数据分析所构建的数据模型是静态的,随着越来越多的数据被捕获和吸收,机器学习算法会随着时间的推移而不断改进。这意味着机器学习算法可以做出一些预测,将实际发生的情况与其预测的情况进行比较,然后进行调整,从而变得更加准确。

通过机器学习实现的预测分析对于许多物联网应用来说都是非常有价值的。我们来看几个具体的例子。

物联网中的应用

工业应用的成本节约

预测的能力在工业环境中非常有用。通过从机器内部或表面上的多个传感器绘制数据,机器学习算法可以“学习”机器的典型特征,然后检测异常状况。

一个名叫Augury的公司做的正是这个事情,它在设备上安装了振动和超声波传感器:

“收集的数据被发送到我们的服务器中,在那里与从该机器收集到的原来的数据以及从类似机器收集到的数据进行比较。我们的平台可以检测到最微小的变化,并在故障发生时发出警告。这个分析是实时完成的,其结果会在几秒钟内显示在技术人员的智能手机上。”

预测机器何时需要维护是非常有价值的,它将节省数百万美元的成本。Goldcorp就是一个很好的例子,它是一家采矿公司,使用巨大的车辆来运送材料。

当这些运输车辆出现故障时,将导致Goldcorp每天损失200万美元。Goldcorp正在使用机器学习预测机器需要维护的时间,准确度超过百分之九十,这节省了巨大的成本。

塑造个人体验

其实我们都熟悉我们日常生活中的机器学习。Amazon和Netflix都在使用机器学习来了解我们的偏好,并为用户提供更好的体验。这可能意味着它会向你推荐你可能喜欢的产品或推荐一些相关的电影和电视节目。

同样的,在物联网的机器学习中,它能将我们的环境塑造成我们个人所喜爱的这一事实将非常有价值。Nest Thermostat是一个很好的例子,它使用机器学习来了解你对冷热度的偏好,确保当你下班回家或在早晨醒来时,房间的温度是合适的。

更多

上面所述的几个例子只是无限的可能性中的一小部分,但它们很重要,因为它们是现在正在运行的物联网中的机器学习的有用的应用程序。

但总的来说…

我们只抓到了皮毛

未来几年将继续连接到互联网的数十亿个传感器和设备将生成指数级的更多的数据。正如我在上一篇文章中讨论过的那样,数据的巨大增长将带来机器学习的巨大进步,并为我们带来无数获得收益的机会。

我们不仅可以预测机器需要维护的时间,还可以预测需要维护我们自己的时间。机器学习将应用于我们的可穿戴设备,以了解我们的基础状况,并在维持我们身体的重要器官出现异常时作出判断,必要时,会自动打电话给医生或救护车。

除了个体之外,我们还可以使用这个健康数据来查看整个人群的身体状况的整体趋势,预测疾病的爆发并主动解决健康问题。

我们还可以在事故发生之前预测事故和犯罪行为。来自智能城市的噪音传感器、摄像机、甚至智能垃圾箱的数据都可以传送到机器学习算法中,以发现事故或犯罪行为发生的征兆,为执法部门提供强有力的工具(当然这将涉及到一些隐私问题)。

尽管机器学习和物联网都处于炒作的高潮,但未来的应用和可能性值得这样的炒作。我们真的只抓到了所有可能性的皮毛。


 


  

本文转自d1net(转载

这篇关于机器学习在物联网中有何应用?首先要搞清楚它和数据分析的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382779

相关文章

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.