【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码

2023-11-10 12:50

本文主要是介绍【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

1.1问题重述

森林火灾时常见诸报端。森林失火,消防站接到报警后派多少消防队员去救火?这是森林防火部门的一个问题。人数多则火灾损失小但救援费用可能大,例如器材消耗,消防员工资等都会增加,反之则火灾损失大而救援费用可能小.

当然在接到报警后消防部门派出队员越多,灭火速度越快,森林损失越小,但同时救援开支会越大,所以需要综合考虑森林损失费和救援费与消防队员人数之间的关系,以总费用最小来确定派出队员的数目。

1.2问题分析

如上所述,森林救火问题与派出的消防队员的人数密切相关,应综合考虑森林损失费和救援费,以总费用最小为目标来确定派出的消防队员的人数使总费用最小。由此看来是一个优化问题。

图1:森林救火问题分析

损失费通常正比于森林烧毁的面积,而烧毁面积与失火、灭火(指火被扑灭)的时间有关,灭火时间又取决于消防队员数目,队员越多灭火越快.救援费除与消防队员人数有关外,也与灭火时间长短有关。

救援费可分为两部分;一部分是灭火器材的消耗及消防队员的薪金等,与队员人数及灭火所用的时间均有关,另一部分是运送队员和器材等一次性支出,只与队员人数有关.

⛄ 部分代码

<span style="color:#333333"><span style="background-color:#fafafa"><code>function drawPath(path,G,flag)</code><code><span style="color:#dd1144">%%%</span>%</code><code>xGrid=size(G,<span style="color:#0e9ce5">2</span>);</code><code>drawShanGe(G,flag)</code><code>hold on</code><code>set(gca,<span style="color:#dd1144">'XtickLabel'</span>,<span style="color:#dd1144">''</span>)</code><code>set(gca,<span style="color:#dd1144">'YtickLabel'</span>,<span style="color:#dd1144">''</span>)</code><code>L=size(path,<span style="color:#0e9ce5">1</span>);</code><code>Sx=path(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>)-<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">5</span>;</code><code>Sy=path(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">2</span>)-<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">5</span>;</code><code>plot(Sx,Sy,<span style="color:#dd1144">'ro'</span>,<span style="color:#dd1144">'MarkerSize'</span>,<span style="color:#0e9ce5">5</span>,<span style="color:#dd1144">'LineWidth'</span>,<span style="color:#0e9ce5">5</span>);   % 起点</code><code><span style="color:#ca7d37">for</span> i=<span style="color:#0e9ce5">1</span><span style="color:#dd1144">:L-</span><span style="color:#0e9ce5">1</span></code><code>    plot([path(i,<span style="color:#0e9ce5">2</span>) path(i+<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">2</span>)]-<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">5</span>,[path(i,<span style="color:#0e9ce5">1</span>) path(i+<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>)]-<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">5</span>,<span style="color:#dd1144">'k-'</span>,<span style="color:#dd1144">'LineWidth'</span>,<span style="color:#0e9ce5">1.5</span>,<span style="color:#dd1144">'markersize'</span>,<span style="color:#0e9ce5">10</span>)</code><code>    hold on</code><code><span style="color:#ca7d37">end</span></code><code>​</code><code>Ex=path(<span style="color:#ca7d37">end</span>,<span style="color:#0e9ce5">1</span>)-<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">5</span>;</code><code>Ey=path(<span style="color:#ca7d37">end</span>,<span style="color:#0e9ce5">2</span>)-<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">5</span>;</code><code>​</code><code>plot(Ex,Ey,<span style="color:#dd1144">'gs'</span>,<span style="color:#dd1144">'MarkerSize'</span>,<span style="color:#0e9ce5">5</span>,<span style="color:#dd1144">'LineWidth'</span>,<span style="color:#0e9ce5">5</span>);   % 终点</code><code>​</code></span></span>

⛄ 运行结果

首先初始化模型的参数值,平均灭火速度设为,火灾蔓延速度设为,开始救火的时刻为3h。相关费用分别为烧毁单位面积损失费 ,每个消防员单位时间费用,每个队员一次性支出为2000

对比分析发现,派出38名消防队员相比20名,灭火的时刻提前了,森林烧毁的面积减少了,有效地遏制住火势的蔓延,使得输出结果中的损失费大大减少,由与派出队员的增加,救援费对应增加,但是得到的总费用无疑是最小的。

⛄ 参考文献

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382736

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束