一种解耦非线性优化的高效VI-SLAM系统-Snake-SLAM

2023-11-10 11:30

本文主要是介绍一种解耦非线性优化的高效VI-SLAM系统-Snake-SLAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

Snake-SLAM 是一种可在低功率航空设备上稳定运行的VI SLAM 自主导航系统。跟踪前端具有地图复用、闭环、重定位功能,并支持单目、立体和 RGBD 输入。该系统通过图论算法来减少关键帧并提出一种“延时地图”的方法来确保生成准确的全局地图,优化后端将 IMU 状态估计与从视觉光束法平差中进行解耦,将有约束的优化问题拆分为两个子问题,大大降低的计算复杂度,并使得Snake-SLAM 相比于现有的SLAM系统可以使用更大滑窗。我们的系统实现了一种先进的多模式VI 初始化方案,该方案使用陀螺仪数据检测视觉异常值并恢复速度、重力和尺度。我们在 EuRoC 数据集上评估 Snake-SLAM ,结果表明它在效率方面优于所有其他方法,并且实现最先进的跟踪精度。

主要工作

1.解耦优化

为了减少非线性优化的复杂度。将状态估计分为两个子问题,首先将IMU估计出来的的速度、偏差、重力方向、尺度用来构建连续帧i和i+1的误差方程,如下:
在这里插入图片描述

然后使用IMU估计的参数去计算i到i+1帧的变换关系,并将这个变换关系添加到视觉BA中,如下:
在这里插入图片描述

  1. 鲁棒性初始化

一个好的初始化对于camera tracking 和准确的尺度恢复起到至关重要的作用,目前一些方案通过将imu静止15妙来进行初始化,但是这种操作是没有必要的,重力偏差可以通过一些关键帧计算得到,无非是尺度和重力方向初始化花费一些时间而已。在 Snake-SLAM 中,跟踪以仅视觉模式开始,当一旦有8个关键帧已插入到地图,陀螺仪偏置初始化启动。为了计算全局偏差,本系统构建旋转最小化误差,如下:
在这里插入图片描述

  1. 地图简化

为了减少冗余计算,将关键帧作为图的节点,图的边为关键帧之间的匹配内点个数;这样就构建了历史关键帧和候选关键帧的图,一旦有新的关键帧插入,取图的最大生成树的最小边作为地图的质量,如果质量大于一定的阈值,丢弃该关键帧,如下图:

在这里插入图片描述

4.延时地图(deferred mapper)

利用了colmap post-triangulation 的思想,local ba 结束后再次三角化,增加地图愁密度,提高稳定性,同时避免gba 漂移。在Snake-SLAM local mapper中,延时10帧,即是当ki插入的时候,ki-10被处理

高效率和低功耗的特点使得Snake-SLAM 可以在各种移动设备,例如无人机、机器人、手机或头戴式AR设备上运行

代码运行效果

源代码地址:https://github.com/darglein/Snake-SLAM

作者上传的代码存在很多bug(不知道他是不是故意的),且Snake-SLAM 的环境及其及其难配置。自己折腾了很久才将环境和代码的bug解决掉(目前可视化还没解决,只能看到最终结果),但是不可否认的是,作者的代码和colmap有异曲同工之处,都具备很好的阅读性,是一款非常推荐的VIO-SLAM系统。同时Snake-SLAM的后端优化和可视化平台与是其作者自己开发的saiga平台(一款轻量级的渲染框架),代码地址:https://github.com/darglein/saiga ,saiga可视化平台可视化效果如下:

在这里插入图片描述

本来是打算在运行Snake-SLAM的时候,看看saiga可视化slam 地图和轨迹的效果有多惊艳,遗憾的是这个bug自己还没解决(如果哪位想和我一起研究可以联系我,我可以将现在已经debug完后的代码共享于你)。

Snake-SLAM 运行效果如下:

机器配置:i5-9300H CPU ,24G

数据集:euroc / MH_05_difficult

图像分辨率:752*480

利用evo 评估轨迹如下:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于一种解耦非线性优化的高效VI-SLAM系统-Snake-SLAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382381

相关文章

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹