一种解耦非线性优化的高效VI-SLAM系统-Snake-SLAM

2023-11-10 11:30

本文主要是介绍一种解耦非线性优化的高效VI-SLAM系统-Snake-SLAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

Snake-SLAM 是一种可在低功率航空设备上稳定运行的VI SLAM 自主导航系统。跟踪前端具有地图复用、闭环、重定位功能,并支持单目、立体和 RGBD 输入。该系统通过图论算法来减少关键帧并提出一种“延时地图”的方法来确保生成准确的全局地图,优化后端将 IMU 状态估计与从视觉光束法平差中进行解耦,将有约束的优化问题拆分为两个子问题,大大降低的计算复杂度,并使得Snake-SLAM 相比于现有的SLAM系统可以使用更大滑窗。我们的系统实现了一种先进的多模式VI 初始化方案,该方案使用陀螺仪数据检测视觉异常值并恢复速度、重力和尺度。我们在 EuRoC 数据集上评估 Snake-SLAM ,结果表明它在效率方面优于所有其他方法,并且实现最先进的跟踪精度。

主要工作

1.解耦优化

为了减少非线性优化的复杂度。将状态估计分为两个子问题,首先将IMU估计出来的的速度、偏差、重力方向、尺度用来构建连续帧i和i+1的误差方程,如下:
在这里插入图片描述

然后使用IMU估计的参数去计算i到i+1帧的变换关系,并将这个变换关系添加到视觉BA中,如下:
在这里插入图片描述

  1. 鲁棒性初始化

一个好的初始化对于camera tracking 和准确的尺度恢复起到至关重要的作用,目前一些方案通过将imu静止15妙来进行初始化,但是这种操作是没有必要的,重力偏差可以通过一些关键帧计算得到,无非是尺度和重力方向初始化花费一些时间而已。在 Snake-SLAM 中,跟踪以仅视觉模式开始,当一旦有8个关键帧已插入到地图,陀螺仪偏置初始化启动。为了计算全局偏差,本系统构建旋转最小化误差,如下:
在这里插入图片描述

  1. 地图简化

为了减少冗余计算,将关键帧作为图的节点,图的边为关键帧之间的匹配内点个数;这样就构建了历史关键帧和候选关键帧的图,一旦有新的关键帧插入,取图的最大生成树的最小边作为地图的质量,如果质量大于一定的阈值,丢弃该关键帧,如下图:

在这里插入图片描述

4.延时地图(deferred mapper)

利用了colmap post-triangulation 的思想,local ba 结束后再次三角化,增加地图愁密度,提高稳定性,同时避免gba 漂移。在Snake-SLAM local mapper中,延时10帧,即是当ki插入的时候,ki-10被处理

高效率和低功耗的特点使得Snake-SLAM 可以在各种移动设备,例如无人机、机器人、手机或头戴式AR设备上运行

代码运行效果

源代码地址:https://github.com/darglein/Snake-SLAM

作者上传的代码存在很多bug(不知道他是不是故意的),且Snake-SLAM 的环境及其及其难配置。自己折腾了很久才将环境和代码的bug解决掉(目前可视化还没解决,只能看到最终结果),但是不可否认的是,作者的代码和colmap有异曲同工之处,都具备很好的阅读性,是一款非常推荐的VIO-SLAM系统。同时Snake-SLAM的后端优化和可视化平台与是其作者自己开发的saiga平台(一款轻量级的渲染框架),代码地址:https://github.com/darglein/saiga ,saiga可视化平台可视化效果如下:

在这里插入图片描述

本来是打算在运行Snake-SLAM的时候,看看saiga可视化slam 地图和轨迹的效果有多惊艳,遗憾的是这个bug自己还没解决(如果哪位想和我一起研究可以联系我,我可以将现在已经debug完后的代码共享于你)。

Snake-SLAM 运行效果如下:

机器配置:i5-9300H CPU ,24G

数据集:euroc / MH_05_difficult

图像分辨率:752*480

利用evo 评估轨迹如下:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于一种解耦非线性优化的高效VI-SLAM系统-Snake-SLAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382381

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon