定义无向加权图,并使用Pytorch_geometric实现图卷积

2023-11-10 11:20

本文主要是介绍定义无向加权图,并使用Pytorch_geometric实现图卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先定义无向边并定义边的权重

import torch
import torch.nn as nn
from torch_geometric.nn import GCNConv
import torch.nn.functional as F
from torch_geometric.data import Dataa = torch.LongTensor([0, 0, 1, 1, 2, 2, 3, 4])
b= torch.LongTensor([0, 1, 2, 3, 1, 5, 1, 4])num_A = 5
# 让b重新编号
b = b+num_A# [源节点,目标节点]
first_c = torch.cat([a, b], dim=-1)
# [目标节点,源节点]
second_c = torch.cat([b, a], dim=-1)
# 拼接变为双向边
edge_index = torch.stack([first_c, second_c], dim=0)
# 因为双向边,把权重的维度要和边的个数匹配
rat = [0.5, 0.8, 1.0, 0.9, 0.7, 0.6,0.2,0.4]
ratings = torch.tensor(rat+rat, dtype=torch.float)
# 定义图
# edge_weight是权重特征,每条边有一个值,即[1,3]
# 如果想要为每条边定义多个特征,例如[[1,2],[2,3]]可以使用edge_attr
graph_data = Data(x=None, edge_index=edge_index,edge_weight=ratings)print(graph_data.is_undirected())

 最后使用图卷积

class GraphConvNet(nn.Module):def __init__(self, graph_data):super(GraphConvNet, self).__init__()self.A_embeddings = nn.Embedding(5, 20)self.B_embeddings = nn.Embedding(6, 20)# 定义图卷积层self.conv1 = GCNConv(20, 20 // 2)self.conv2 = GCNConv(20 // 2, 20)self.norm = torch.nn.BatchNorm1d(20 // 2)self.data = graph_dataself.data.x = (torch.cat([self.A_embeddings.weight, self.B_embeddings.weight], dim=0))def forward(self):x, edge_index,edge_weight = self.data.x, self.data.edge_index,self.data.edge_weightx = self.conv1(x, edge_index,edge_weight.view(-1))x = self.norm(x)x = torch.relu(x)x = F.dropout(x)x = self.conv2(x, edge_index,edge_weight)A_embedded = x[:5]B_embedded = x[5:]return A_embedded, B_embeddedgcnmodel = GraphConvNet(graph_data)
A_emb,B_emb = gcnmodel.forward()

这篇关于定义无向加权图,并使用Pytorch_geometric实现图卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382324

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.