Android的安全机制 1 -- 老罗

2023-11-10 08:50
文章标签 android 安全 机制 老罗

本文主要是介绍Android的安全机制 1 -- 老罗,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


        Android是一个基于Linux内核的移动操作系统。Linux是一个支持多用户的系统,系统中的文件的访问权限是通过用户ID(UID)和用户组ID(GID)来控制的。换句话说,就是Linux的安全机制是基于UID和GID来实现的。Android在Linux内核提供的基于UID和GID的安全机制的基础上,又实现了一套称为Permission的安全机制,如图1所示:


图1 Linux的UID/GID安全机制与Android的Permission安全机制

        那么,这两个安全机制是如何对应起来的呢?

        我们首先看一下Linux基于UID和GID的安全机制,它包含三个基本角色:用户、进程和文件,如图2所示:


图2 Linux基于UID/GID的安全机制的三个角色

        Linux中的每一个用户都分配有一个UID,然后所有的用户又按组来进划分,每一个用户组都分配有一个GID。注意,一个用户可以属于多个用户组,也就是说,一个UID可以对应多个GID。在一个用户所对应的用户组中,其中有一个称为主用户组,其它的称为补充用户组。

        Linux中的每一个文件都具有三种权限:Read、Write和Execute。这三种权限又按照用户属性划分为三组:Owner、Group和Other。如图3所示:


图3 Linux的文件权限划分

        从图3就可以看出文件acct:1. 所有者为root,可读可写可执行;2. 所有者所属的主用户组为root,在这个组中的其它用户可读可执行;3. 其余的用户可读可执行。

        Linux中的每一个进程都关联有一个用户,也就是对应有一个UID,如图4所示:


图4 Linux的进程

         由于每一个用户都对应有一个主用户组,以及若干个补充用户组,因此,每一个进程除了有一个对应的UID之外,还对应有一个主GID,以及若干个Supplementary GIDs。这些UID和GID就决定了一个进程所能访问的文件或者所能调用的系统API。例如,在图4中,PID为340的进程一般来说,就只能访问所有者为u0_a19的文件。

         一个进程的UID是怎么来的呢?在默认情况下,就等于创建它的进程的UID,也就是它的父进程的UID。Linux的第一个进程是init进程,它是由内核在启动完成后创建的,它的UID是root。然后系统中的所有其它进程都是直接由init进程或者间接由init进程的子进程来创建。所以默认情况下,系统的所有进程的UID都应该是root。但是实际情况并非如此,因为父进程在创建子进程之后,也就是在fork之后,可以调用setuid来改变它的UID。例如,在PC中,init进程启动之后,会先让用户登录。用户登录成功后,就对应有一个shell进程。该shell进程的UID就会被setuid修改为所登录的用户。之后系统中创建的其余进程的UID为所登录的用户。

        进程的UID除了来自于父进程之外,还有另外一种途径。上面我们说到,Linux的文件有三种权限,分别是Read、Wirte和Execute。其实还有另外一个种权限,叫做SUID。例如,我们对Android手机进行root的过程中,会在里面放置一个su文件。这个su文件就具有SUID权限,如图5所示:


图5 su的SUID和SGID

        一个可执行文件一旦被设置了SUID位,那么当它被一个进程通过exec加载之后,该进程的UID就会变成该可执行文件的所有者的UID。也就是说,当上述的su被执行的时候,它所运行在的进程的UID是root,于是它就具有最高级别的权限,想干什么就干什么。

        与SUI类似,文件还有另外一个称为SGID的权限,不过它描述的是用户组。也就是说,一个可执行文件一旦被设置了GUID位,么当它被一个进程通过exec加载之后,该进程的主UID就会变成该可执行文件的所有者的主UID。

        现在,小伙伴们应该可以理解Android手机的root原理了吧:一个普通的进程通过执行su,从而获得一个具有root权限的进程。有了这个具有root权限的进程之后,就可以想干什么就干什么了。su所做的事情其实很简单,它再fork另外一个子进程来做真正的事情,也就是我们在执行su的时候,后面所跟的那些参数。由于su所运行在的进程的UID是root,因此由它fork出来的子进程的UID也是root。于是,子进程也可以想干什么就干什么了。

        不过呢,用来root手机的su还会配合另外一个称为superuser的app来使用。su在fork子进程来做真正的事情之前,会将superuser启动起来,询问用户是否允许fork一个UID是root的子进程。这样就可以对root权限进行控制,避免被恶意应用偷偷地使用。

        这里是su的源代码,小伙伴们可以根据上面所讲的知识读一读:https://code.google.com/p/superuser/source/browse/trunk/su/su.c?r=2。

        在传统的UNIX以及类UNIX系统中,进程的权限只划分两种:特权和非特权。UID等于0的进程就是特权进程,它们可以通过一切的权限检查。UID不等于0的进程就非特权进程,它们在访问一些敏感资源或者调用一个敏感API时,需要进行权限检查。这种纯粹通过UID来做权限检查的安全机制来粗放了。于是,Linux从2.2开始,从进程的权限进行了细分,称为Capabilities。一个进程所具有Capabilities可以通过capset和prctl等系统API来设置。也就是说,当一个进程调用一个敏感的系统API时,Linux内核除了考虑它的UID之外,还会考虑它是否具有对应的Capability。

        这里就是Linux所设计的Capabilities列表,有兴趣的小伙伴可以再读一读:http://man7.org/linux/man-pages/man7/capabilities.7.html。

        以上就是Linux基于UID/GID的安全机制的核心内容。接下来我们再看Android基于Permission的安全机制,它也有三个角色:apk、signature和permission,如图6所示:


图6 Android的Permission安全机制

        

        Android的APK经过PackageManagerService安装之后,就相当于Linux里面的User,它们都会被分配到一个UID和一个主GID,而APK所申请的Permission就相当于是Linux里面的Supplementary GID。

        我们知道,Android的APK都是运行在独立的应用程序进程里面的,并且这些应用程序进程都是Zygote进程fork出来的。Zygote进程又是由init进程fork出来的,并且它被init进程fork出来后,没有被setuid降权,也就是它的uid仍然是root。按照我们前面所说的,应用程序进程被Zygote进程fork出来的时候,它的UID也应当是root。但是,它们的UID会被setuid修改为所加载的APK被分配的UID。

       参照Android应用程序进程启动过程的源代码分析一文的分析,ActivityManagerService在请求Zygote创建应用程序进程的时候,会将这个应用程序所加载的APK所分配得到的UID和GID(包括主GID和Supplementary GID)都收集起来,并且将它们作为参数传递给Zygote进程。Zygote进程通过执行函数来fork应用程序进程:

[cpp] view plain copy 在CODE上查看代码片 派生到我的代码片
  1. /* 
  2.  * Utility routine to fork zygote and specialize the child process. 
  3.  */  
  4. static pid_t forkAndSpecializeCommon(const u4* args, bool isSystemServer)  
  5. {     
  6.     pid_t pid;  
  7.       
  8.     uid_t uid = (uid_t) args[0];  
  9.     gid_t gid = (gid_t) args[1];  
  10.     ArrayObject* gids = (ArrayObject *)args[2];  
  11.     ......  
  12.       
  13.     pid = fork();  
  14.       
  15.     if (pid == 0) {  
  16.         ......  
  17.           
  18.         err = setgroupsIntarray(gids);  
  19.         ......  
  20.           
  21.         err = setgid(gid);  
  22.         ......  
  23.           
  24.         err = setuid(uid);  
  25.         ......  
  26.     }     
  27.       
  28.     .....  
  29.       
  30.     return pid;  
  31. }     

        参数args[0]、args[1]和args[]保存的就是APK分配到的UID、主GID和Supplementary GID,它们分别通过setuid、setgid和setgroupsIntarray设置给当前fork出来的应用程序进程,于是应用程序进程就不再具有root权限了。

        那么,Signature又充当什么作用呢?两个作用:1. 控制哪些APK可以共享同一个UID;2. 控制哪些APK可以申请哪些Permission。

        我们知道,如果要让两个APK共享同一个UID,那么就需要在AndroidManifest中配置android:sharedUserId属性。PackageManagerService在安装APK的时候,如果发现两个APK具有相同的android:sharedUserId属性,那么它们就会被分配到相同的UID。当然这有一个前提,就是这两个APK必须具有相同的Signature。这很重要,否则的话,如果我知道别人的APK设置了android:sharedUserId属性,那么我也在自己的APK中设置相同的android:sharedUserId属性,就可以去访问别人APK的数据了。

        除了可以通过android:sharedUserId属性申请让两个APK共享同一个UID之外,我们还可以将android:sharedUserId属性的值设置为“android.uid.system”,从而让一个APK的UID设置为1000。UID是1000的用户是system,系统的关键服务都是运行在的进程的UID就是它。它的权限虽然不等同于root,不过也足够大了。我们可以通过Master Key漏洞来看一下有多大。

        Master Key漏洞发布时,曾轰动了整个Android界,它的具体情况老罗就不分析了,网上很多,这里是一篇官方的文章:http://bluebox.com/corporate-blog/bluebox-uncovers-android-master-key/。现在就简单说说它是怎么利用的:

        1. 找到一个具有系统签名的APP,并且这个APP通过android:sharedUserId属性申请了android.uid.system这个UID。

        2. 通过Master Key向这个APP注入恶意代码。

        3. 注入到这个APP的恶意代码在运行时就获得了system用户身份。

        4. 修改/data/local.prop文件,将属性ro.kernel.qemu的值设置为1。

        5. 重启手机,由于ro.kernel.qemu的值等于1,这时候手机里面的adb进程不会被setuid剥夺掉root权限。

        6. 通过具有root权限的adb进程就可以向系统注入我们熟悉的su和superuser.apk,于是整个root过程完成。

        注意,第1步之所以要找一个具有系统签名的APP,是因为通过android:sharedUserId属性申请android.uid.system这个UID需要有系统签名,也就是说不是谁可以申请system这个UID的。另外,/data/local.prop文件的Owner是system,因此,只有获得了system这个UID的进程,才可以对它进行修改。

        再说说Signature与Permission的关系。有些Permission,例如INSTALL_PACKAGE,不是谁都可以申请的,必须要具有系统签名才可以,这样就可以控制Suppementary GID的分配,从而控制应用程序进程的权限。具有哪些Permission是具有系统签名才可以申请的,可以参考官方文档:http://developer.android.com/reference/android/Manifest.html,就是哪些标记为“Not for use by third-party applications”的Permission。

        了解了Android的Permission机制之后,我们就可以知道:

         1. Android的APK就相当于是Linux的UID。

         2. Android的Permission就相当于是Linux的GID。

         3. Android的Signature就是用来控制APK的UID和GID分配的。

         这就是Android基于Permission的安全机制与Linux基于UID/GID的安全机制的关系,概括来说,我们常说的应用程序沙箱就是这样的:


图7 Android的Application Sandbox




这篇关于Android的安全机制 1 -- 老罗的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/381635

相关文章

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

详解Spring中REQUIRED事务的回滚机制详解

《详解Spring中REQUIRED事务的回滚机制详解》在Spring的事务管理中,REQUIRED是最常用也是默认的事务传播属性,本文就来详细的介绍一下Spring中REQUIRED事务的回滚机制,... 目录1. REQUIRED 的定义2. REQUIRED 下的回滚机制2.1 异常触发回滚2.2 回

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

在Android中使用WebView在线查看PDF文件的方法示例

《在Android中使用WebView在线查看PDF文件的方法示例》在Android应用开发中,有时我们需要在客户端展示PDF文件,以便用户可以阅读或交互,:本文主要介绍在Android中使用We... 目录简介:1. WebView组件介绍2. 在androidManifest.XML中添加Interne

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不