CVPR 2023 | 统一框架MAGE:表征学习超MAE,无监督图像生成超越Latent Diffusion

本文主要是介绍CVPR 2023 | 统一框架MAGE:表征学习超MAE,无监督图像生成超越Latent Diffusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

aab997dd4585f0ef2c3ed07bd69c3cf4.gif

©作者 | 机器之心编辑部

来源 | 机器之心

在一篇 CVPR 2023 论文中,来自 MIT 和谷歌的研究人员提出了一种全新的框架 MAGE,同时在图像识别和生成两大任务上实现了 SOTA。

识别和生成是人工智能领域中的两大核心任务,如果能将二者合并到一个统一的系统中,这两个任务应该能实现互补。事实上,在自然语言处理中,像 BERT [1] 这样的模型不仅能够生成高质量的文本,还能够提取文本中的特征。

然而,在计算机视觉领域,目前的图像生成模型和识别模型大多是分开进行训练,没有充分利用这两个任务的协同作用。这主要是由于图像生成和图像识别的模型通常具有本质上的结构差异:图像生成的输入是低维度的特征或噪声,而输出是高维度的原始图像;与之相反,图像识别的输入是高维度的原始图像,而输出是低维度的特征。

最近,来自 MIT 和 Google Research 的研究人员提出了一种基于图像语义符掩码的表征学习方法,首次在一个统一的框架中实现了图像生成和表征学习,并在多个数据集上取得了 SOTA 表现。研究论文已被 CVPR 2023 接收,相关代码与预训练模型已开源。

c175bb6b5dbce1e7194c1e5c6c10b2c2.png

论文标题:

MAGE: MAsked Generative Encoder to Unify Representation Learning and Image Synthesis

论文链接:

https://arxiv.org/abs/2211.09117

代码地址:

https://github.com/LTH14/mage

在 CVPR 2022 上,MAE [2] 提出了一种基于图像掩码(MIM)的表征学习方法,并在多个子任务上取得了非常好的效果。在高达 75% 的掩码率下,MAE 可以重构出与原图语义十分贴合的图像,并借此让网络能够自监督地学习图像中的特征。


然而,如图 1 所示, MAE 重建的图像虽然具有与原始图像相似的语义信息,但会出现严重的模糊与失真问题。类似的问题也出现在所有基于 MIM 的表征学习方法中。同时,目前的生成模型,不管是扩散模型还是 GAN,都缺乏提取高质量图像特征的能力。

f40fd3d37bf44f1af1ee7b9b9dda07c1.png

▲ 图1. MAE 与 MAGE 重构对比

034c0013f66492b807a347089504c7b4.png

方法概述

针对上述问题,本文作者提出了 MAGE(Masked Generative Encoder),首次实现了统一的图像生成和特征提取模型。与MIM直接作用于图像的掩码方法不同,MAGE 提出了基于图像语义符的 masked image token modeling 方法。

如图所示,MAGE 首先使用 VQGAN [3] 编码器将原始图像转换为离散的语义符。之后,MAGE 对其进行随机掩码,并使用基于 transformer 的 encoder-decoder 结构对掩码进行重构,重构后的语义符可以通过 VQGAN 解码器生成原始图像。通过在训练中使用不同的掩码率,MAGE 可以同时进行生成模型(接近 100% 掩码率)和表征学习(50%-80% 掩码率)的训练。

如图 1 所示,MAGE 重建出的图像不仅具有与原始图像一致的语义信息,还能够同时保证生成图像的多样性与真实性。

544065d7b18532e80488a226f0ea7fa0.png

▲ 图2. MAGE结构图

7c146e58784366d3d5010c6edd924c70.png

实验结果

MAGE 在多个图像生成与图像识别任务上都达到或超过了 SOTA。

8a0227ec7ca50b1ce11ee0c7534dd4c3.jpeg

在 ImageNet 的无监督图像生成任务中,MAGE 的 FID 从之前的 > 20 降至 7.04,甚至达到了有监督图像生成的水准(有监督 Latent Diffusion 在 ImageNet 上的 FID 为 3.60):

98795ef77d6c5976b82b40e85be94a9d.png

aba6962536deb8228292b154d37fcac1.png

▲ 图3. MAGE无监督图像生成样例

MAGE 还能够进行各类图像编辑工作,包括 image inpainting、outpainting、uncropping:

1c6ef008e982748cf7926d6073983f9b.png

a25b23a9dd9a9f76fd5c3c759222b132.png

2b827b612e3c4bf7b23b1c585f8b8b59.png

6a8294f31ebfb2675119ef423a059b2b.png

▲ 图4. MAGE图像编辑样例

在表征学习方面,MAGE 在 ImageNet linear probing、少样本学习、迁移学习等任务中,相较于目前的 MIM 方法有了大幅提升,并且可以达到或超过目前最优的自监督学习方法的水平。

2d6e60896861ea055eab41b113bfcc6d.png

39d203f7f8e2c0de2a614c4ec9b07b3c.png

af4152aaa9f522f65b50375130991a15.png

结语

本文旨在将图像生成与表征学习统一起来。为此,本文作者提出了 MAGE,一种基于图像语义符掩码的自监督学习框架。该框架简洁、高效,并首次在图像生成和表征学习上都达到或超越了 SOTA 的表现。感兴趣的读者可以查看论文原文,以了解更多研究细节。

outside_default.png

参考文献

outside_default.png

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders are scalable ´ vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16000– 16009, 2022.

[3] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12873–12883, 2021.

更多阅读

f5f00ee4e7818db20ba6552b0b0cd381.png

7e96b1c98688e2ab110cc900dd68affb.png

05a3eeb118f57ff3fd7f675c72900ece.png

1209a590676dfd230fe0dc5c79a7e0c9.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

4d127d2abc039a291dcab9955f32e708.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

ac7f48f4aa18879e5a7e4a5250e241d9.jpeg

这篇关于CVPR 2023 | 统一框架MAGE:表征学习超MAE,无监督图像生成超越Latent Diffusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/129433996
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/380581

相关文章

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编