CNN感性认识(二)——神经网络的优化

2023-11-10 03:40

本文主要是介绍CNN感性认识(二)——神经网络的优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:http://neuralnetworksanddeeplearning.com/chap3.html

一、损失函数的优化
如果我们想处理分类问题,选择损失函数时,一个选项是交叉熵损失函数(the cross-entropy cost function)。交叉熵损失可以缓解之前提到的由于激活函数的输入落在函数偏左或偏右侧导致的导数过小而训练缓慢的问题。
原因在于:如果使用均方误差作为激活函数
这里写图片描述
对于单层神经网络单个神经元而言:
这里写图片描述
其中a是输出
交叉熵损失表示如下:这里写图片描述
此时:这里写图片描述
这里写图片描述
对多层的神经网络而言:
这里写图片描述
不需要对sigmoid函数求导,交叉熵损失的大小取决于输出误差,输出误差越小,交叉熵损失越小。
注意:交叉熵损失+sigmoid主要针对二分类问题
另一个有助于缓解学习缓慢问题的方法是:softmax+log-likelihood,主要针对多分类问题
softmax是sigmoid的推广+优化(不纯是推广,softmax在二分类情况下和sigmoid也不一样)
softmax表示为:这里写图片描述
这里写图片描述
这就能体现此消彼长的关系。
从softmax层的输出可以看作是一个概率分布,也就是说,一种情况的概率上升,其他情况的概率就下降。
对数似然函数:这里写图片描述
此时:这里写图片描述

二、过拟合和正则化
评估一个模型的正确方法是:看它能否对未训练过的数据进行正确的预测。
增加训练数据量是减轻过拟合的方式,另一种方法是减小网络的规模,但是规模较大的网络往往性能更强,因此我们并不愿意用这种方式。为了解决这个问题,我们采取正则化(regularization)的方式。
① L2正则化,权重衰减
最常用的正则化方法是:权重衰减(weight decay),也称为L2正则化(L2 regularization)。中心思想是:为损失函数增加一个正则项。
拿交叉熵损失函数举例,如果引入正则项:
这里写图片描述
这里写图片描述,它是正则化参数(regularization parameter)
总得来说,损失函数可以写成:这里写图片描述
直观地看,正则项存在的意义是让网络的权重比较小。
偏置的更新不受影响,权重的更新发生改变:
这里写图片描述
其中,这里写图片描述也被称为权重衰减(weight decay)。
② L1正则化(L1 regularization)
这里写图片描述

这里写图片描述
其中,sgn(w)是指w的符号。
③ Dropout
dropout不修改损失函数,而是修改网络本身。
假如我们随机地临时删去一半神经元,每使用一个mini batch的样本训练,都会先回复原来的神经元,重新选择神经元删除。
用完整的网络工作时,把未被隐藏过的神经元的权重减半。
dropout就好比将很多不同的神经网络叠加后平均。不同的神经网络有不同的过拟合倾向,用dropout可以减弱整体的过拟合。
④ 人为地扩大训练数据
比如说,把一个数字的图像稍微倾斜,就是一张完全不同的图像了。

三、优化梯度下降
采取基于势的梯度下降优化,该方法引入速度的概念,梯度改变时速度也改变。还引入摩擦项,倾向于减小速度。
原来的梯度下降更新方法:这里写图片描述
引入势后:这里写图片描述
这里写图片描述是控制系统衰减或阻力的超参数,它的值为1时,无阻力,它的值为0时,阻力为无穷大。这里写图片描述 可以让系统不会过调(overshooting),被称为动量系数(momentum co-efficient)
这一方法可以与反向传播同时使用,也不影响随机选择mini-batch,因此现在它被广泛地使用。

四、其他优化的方法
可以用修正线性神经元(ReLU)代替sigmoid神经元。
这里写图片描述
这里写图片描述
对比Sigmoid系主要变化有三点:①单侧抑制 ②相对宽阔的兴奋边界 ③稀疏激活性
总得来说,relu的梯度更易计算,不会出现sigmoid那样在两侧训练缓慢的问题,现在也被广泛地使用。

这篇关于CNN感性认识(二)——神经网络的优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380206

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S