poj1091 跳蚤 解不定方程 容斥原理

2023-11-10 02:08

本文主要是介绍poj1091 跳蚤 解不定方程 容斥原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考博客:https://blog.csdn.net/yitiaodacaidog/article/details/15462857

跳蚤

Time Limit: 1000MS

 

Memory Limit: 10000K

Total Submissions: 11210

 

Accepted: 3513

Description

Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。 
比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。 
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。 

Input

两个整数N和M(N <= 15 , M <= 100000000)。

Output

可以完成任务的卡片数。

Sample Input

2 4

Sample Output

12

Hint

这12张卡片分别是: 
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4), 
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4) 

Source

HNOI 2001

算法分析:

先补充一个原理

1、最大公约数原理
d = gcd(A1, A2, ..., An),则必然可以找到或正或负的整数Xi, 使
A1X1 + A2X2 + ... + AnXn = d
.2
A1X1 + A2X2 + ... + AnXn = 1有解的充要条件是d = gcd(A1, A2, ..., An) = 1

所以,我们假设卡片上的标号分别是a1,a2,...,an,M,

 

跳蚤跳对应标号的卡片的次数分别为x1,x2,...,xn,xn+1,

那么要满足已知条件只需满足方程a1*x1+a2*x2+...+an*xn+M*xn+1=1有解,

即gcd(a1,a2,...,an,m)=1, 但互质情况不好求,所以求不互质情况。

容斥原理解题思路以前写过,这里重申

将M因式分解:M = P1^K1 * P2^K2 + ... + Pr^Kr

则区间[1, M]内的整数是Pi的倍数的有:Pi, 2Pi, 3Pi, ..., r1Pi (这里的r1 = M / Pi)

而同理,是Pi.Pk的倍数有:Pi.Pk, 2Pi.Pk, ..., rPi.Pk (这里的r i= M / Pi.Pk)

当前n个数中都含有P1的因数的情况数有r1^n = (M / P1)^n种(他可以选重复,所以不用担心不够n个),含有P2的因数情况数有r2^n = (M / P2)^n种,……

而总可能数为M^n种,故结果res = M^n - [(M / P1)^n + (M / P2)^n + ... + (M / Pn)^n] + ... + (-1)^(n+1) * [M / (P1*P2*P3*...*Pk)],

容斥定理推出公式:公因子不为1的个数 f = t(1) - t(2) + t(3) - ... + (-1) ^ (k - 1) t(k)

 

符合要求个数为 m ^ n – f

代码实现:

#include<cstdio>  
#include<cstring>  
#include<cstdlib>  
#include<cctype>  
#include<cmath>  
#include<iostream>  
#include<sstream>  
#include<iterator>  
#include<algorithm>  
#include<string>  
#include<vector>  
#include<set>  
#include<map>  
#include<stack>  
#include<deque>  
#include<queue>
using namespace std;
typedef long long ll;
long long ans=0,sum=0,r;
int n,m;
ll fac[105];
void factor(ll m)
{sum = 0;ll tmp = m;for(ll i = 2; i*i<=tmp; i++)    //官方版的唯一分解定理if(tmp%i==0){fac[sum++] = i;while(tmp%i==0) tmp /=  i;}if(tmp>1) fac[sum++] = tmp;
}
void dfs(int i,int cnt,int tmp)//i代表数组的下标
{                              //cnt代表几个元素的最小公倍数   if(cnt&1)                   //容斥原理ans+=(ll)pow(m/tmp,n);elseans-=(ll)pow(m/tmp,n);for(int j=i+1;j<sum;j++)dfs(j,cnt+1,tmp*fac[j]);
}int main()
{while(scanf("%d%d",&n,&m)!=EOF){   ans=0;sum=0;factor(m);for(int i=0;i<sum;i++)dfs(i,1,fac[i]);ans=pow(m,n)-ans;printf("%lld\n",ans);}
} 

 

这篇关于poj1091 跳蚤 解不定方程 容斥原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379788

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja