推荐 :基于新闻标题的股价走势分析(附链接)

2023-11-10 00:20

本文主要是介绍推荐 :基于新闻标题的股价走势分析(附链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:  Ronil Patil  翻译:王闯 (Chuck)。校对:詹好

本文约1900字,建议阅读5分钟

作者基于Kaggle上的新闻头条和股票指数数据集,用Python演示了如何利用NLP技术对新闻标题进行情感分析,从而预测股价走势。

本文曾作为数据科学博客松(https://datahack.analyticsvidhya.com/contest/data-science-blogathon-7/)的部分内容发表。

“不要在草堆里找一根藏针,而是要买下整个草堆!”

本次的主题与上述的引文有关,是一项对于股票市场的数据研究工作(译者注:引文是美国指数基金先驱John Bogle的名言,简述了指数型基金的概念,即与其花昂贵的费用请经理人从股市里大海捞针,不如用最简单的方法、最少的手续费,投资整个市场。)

本文介绍了基于自然语言处理(NLP)技术,如何创建一个利用新闻标题来分析股价的模型。具体而言,利用NLP来对新闻标题进行情感分析,从而预测股价涨跌。因此,本文的所有内容都是围绕如何用情感分析来预测股价展开的。

数据集介绍

 

这里我们使用了Kaggle数据集。你可以从这里(https://github.com/ronil068/Stock-Sentiment-Analysis)直接下载。该数据集是Kaggle上可用的世界新闻和股票价格的组合数据。数据框中包括其中25列分别对应每一天的25条TOP新闻,日期列(Date)和标签列(Label, 因变量特征)。数据范围是2008年至2016年,数据框2000年至2008年是从雅虎财经抓取的。标签基于道琼斯工业平均指数。

  • 标签为1–股价上涨。

  • 标签为0–股价持平或下跌。

开始

 

首先引入相关库
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
读取数据集

df = pd.read_csv('F:Stock-Sentiment-Analysis-master/Stock News Dataset.csv', encoding = "ISO-8859-1")

我们可以观察一下该数据集的一些特征:Label(标签)是我们的因变量特征(目标值),其余26个特征是自变量。当Label特征的值为1时,代表股价上涨,值为0时,代表股价持平或下跌;Top1到Top25,则是当日的25个Top新闻的标题;Date是时间信息。以上我们用来进行分析的数据集了。我们将利用NLP来对文章标题进行情感分析,从而预测股价将上涨还是下跌。

将数据集划分为训练集和测试集

 

train = df[df['Date'] < '20150101']
test = df[df['Date'] > '20141231']

 

我们将根据日期划分数据集。日期小于20150101的数据集为训练数据集,日期大于20141231的数据集为测试数据集。

特征工程

首先,我们需要从Top1到Top25的这些文本数据集中删除句号、感叹号等符号,只保留文字信息。因为进行情感分析不需要符号之类的信息。这里使用了正则表达式来进行处理。如前文所述,除了小写字母a-z和大写字母A-Z之外,所有内容都被替换为空白。如果有任何特殊字符出现,它将被自动删除并被替换为空格。

 

 # Removing special characters
data=train.iloc[:,2:27]
data.replace("[^a-zA-Z]"," ",regex=True, inplace=True)
# Renaming column names for better understanding and ease of access
list1= [i for i in range(25)]
new_Index=[str(i) for i in list1]
data.columns= new_Index
data.head(5)

更新后的数据集如下所示:

同时,我们还需要统一字符的大小写。这是非常关键的一步,因为每当我们尝试创建词袋模型或TF-IDF模型时,如果一个单词以大写字母开头,同时当它在另一个句子中以小写出现,模型将认为这是两个不同的单词。也就是说本来是同一个单词,但仅仅由于大小写的不同,却被视为不同的单词。这是我们需要避免的。

 # Convertng headlines to lower case
for index in new_Index:data[index] = data[index].str.lower()
data.head(1)

因此,请始终确保已将所有字母都转换为小写。当然也可以将它们转换为大写字母,但是如果决定将所有字母都转换为大写,则应当确保每个字母都应大写。

根据索引来合并所有新闻标题:

现在我们将某一天的25个Top新闻标题合并在一起,成为一个段落。这是为了方面我们后续应用CountVectorizer方法,即词袋模型或TF-IDF模型。因此,我将遍历每个日期,并将每一个日期下的25个标题合并为一个段落。

 headlines = []
for row in range(0,len(data.index)):headlines.append(' '.join(str(x) for x in data.iloc[row,0:25]))

现在,某一天的Top新闻标题就变成了这样:


应用CountVectorizer和RandomForestClassifier方法

此处,文本词频统计向量会将这些句子向量化。这便是词袋的含义。

 ## implement BAG OF WORDS
countvector=CountVectorizer(ngram_range=(2,2))
traindataset=countvector.fit_transform(headlines)## implement RandomForest Classifier
randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
randomclassifier.fit(traindataset,train['Label'])
在测试集上进行预测

 

现在我们将对测试集进行与训练集相同的特征转换。

 

 ## Predict for the Test Dataset
test_transform= []
for row in range(0,len(test.index)):test_transform.append(' '.join(str(x) for x in test.iloc[row,2:27]))
test_dataset = countvector.transform(test_transform)
predictions = randomclassifier.predict(test_dataset)
最后,检查准确性 

 

在这里,我们将利用分类报告,混淆矩阵和准确率分数来检查模型的准确性。

 matrix = confusion_matrix(test['Label'],predictions)
print(matrix)
score = accuracy_score(test['Label'],predictions)
print(score)
report = classification_report(test['Label'],predictions)
print(report)

我们终于完成了所有步骤。

现在,假设你想预测明天股价涨跌,只需对排名前25的头条新闻应用本文中介绍的转换方法,然后将其输入到模型中,模型就会输出0或1,来表示明天的股票会不会上涨。

这就是如何利用新闻标题来进行股票情感分析的方法。

关于作者

Ronil Patil是一个终身学习者,对深度学习,NLP,机器学习和物联网充满热情。

Ronil Patil

https://www.linkedin.com/in/ronil08/

原文标题:

Stock Price Movement Based On News Headline

原文链接:

https://www.analyticsvidhya.com/blog/2021/05/stock-price-movement-based-on-news-headline

译者简介:王闯(Chuck),台湾清华大学资讯工程硕士。曾任奥浦诺管理咨询公司数据分析主管,现任尼尔森市场研究公司数据科学经理。很荣幸有机会通过数据派THU微信公众平台和各位老师、同学以及同行前辈们交流学习。

END

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于推荐 :基于新闻标题的股价走势分析(附链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379309

相关文章

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主