推荐 :基于新闻标题的股价走势分析(附链接)

2023-11-10 00:20

本文主要是介绍推荐 :基于新闻标题的股价走势分析(附链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:  Ronil Patil  翻译:王闯 (Chuck)。校对:詹好

本文约1900字,建议阅读5分钟

作者基于Kaggle上的新闻头条和股票指数数据集,用Python演示了如何利用NLP技术对新闻标题进行情感分析,从而预测股价走势。

本文曾作为数据科学博客松(https://datahack.analyticsvidhya.com/contest/data-science-blogathon-7/)的部分内容发表。

“不要在草堆里找一根藏针,而是要买下整个草堆!”

本次的主题与上述的引文有关,是一项对于股票市场的数据研究工作(译者注:引文是美国指数基金先驱John Bogle的名言,简述了指数型基金的概念,即与其花昂贵的费用请经理人从股市里大海捞针,不如用最简单的方法、最少的手续费,投资整个市场。)

本文介绍了基于自然语言处理(NLP)技术,如何创建一个利用新闻标题来分析股价的模型。具体而言,利用NLP来对新闻标题进行情感分析,从而预测股价涨跌。因此,本文的所有内容都是围绕如何用情感分析来预测股价展开的。

数据集介绍

 

这里我们使用了Kaggle数据集。你可以从这里(https://github.com/ronil068/Stock-Sentiment-Analysis)直接下载。该数据集是Kaggle上可用的世界新闻和股票价格的组合数据。数据框中包括其中25列分别对应每一天的25条TOP新闻,日期列(Date)和标签列(Label, 因变量特征)。数据范围是2008年至2016年,数据框2000年至2008年是从雅虎财经抓取的。标签基于道琼斯工业平均指数。

  • 标签为1–股价上涨。

  • 标签为0–股价持平或下跌。

开始

 

首先引入相关库
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
读取数据集

df = pd.read_csv('F:Stock-Sentiment-Analysis-master/Stock News Dataset.csv', encoding = "ISO-8859-1")

我们可以观察一下该数据集的一些特征:Label(标签)是我们的因变量特征(目标值),其余26个特征是自变量。当Label特征的值为1时,代表股价上涨,值为0时,代表股价持平或下跌;Top1到Top25,则是当日的25个Top新闻的标题;Date是时间信息。以上我们用来进行分析的数据集了。我们将利用NLP来对文章标题进行情感分析,从而预测股价将上涨还是下跌。

将数据集划分为训练集和测试集

 

train = df[df['Date'] < '20150101']
test = df[df['Date'] > '20141231']

 

我们将根据日期划分数据集。日期小于20150101的数据集为训练数据集,日期大于20141231的数据集为测试数据集。

特征工程

首先,我们需要从Top1到Top25的这些文本数据集中删除句号、感叹号等符号,只保留文字信息。因为进行情感分析不需要符号之类的信息。这里使用了正则表达式来进行处理。如前文所述,除了小写字母a-z和大写字母A-Z之外,所有内容都被替换为空白。如果有任何特殊字符出现,它将被自动删除并被替换为空格。

 

 # Removing special characters
data=train.iloc[:,2:27]
data.replace("[^a-zA-Z]"," ",regex=True, inplace=True)
# Renaming column names for better understanding and ease of access
list1= [i for i in range(25)]
new_Index=[str(i) for i in list1]
data.columns= new_Index
data.head(5)

更新后的数据集如下所示:

同时,我们还需要统一字符的大小写。这是非常关键的一步,因为每当我们尝试创建词袋模型或TF-IDF模型时,如果一个单词以大写字母开头,同时当它在另一个句子中以小写出现,模型将认为这是两个不同的单词。也就是说本来是同一个单词,但仅仅由于大小写的不同,却被视为不同的单词。这是我们需要避免的。

 # Convertng headlines to lower case
for index in new_Index:data[index] = data[index].str.lower()
data.head(1)

因此,请始终确保已将所有字母都转换为小写。当然也可以将它们转换为大写字母,但是如果决定将所有字母都转换为大写,则应当确保每个字母都应大写。

根据索引来合并所有新闻标题:

现在我们将某一天的25个Top新闻标题合并在一起,成为一个段落。这是为了方面我们后续应用CountVectorizer方法,即词袋模型或TF-IDF模型。因此,我将遍历每个日期,并将每一个日期下的25个标题合并为一个段落。

 headlines = []
for row in range(0,len(data.index)):headlines.append(' '.join(str(x) for x in data.iloc[row,0:25]))

现在,某一天的Top新闻标题就变成了这样:


应用CountVectorizer和RandomForestClassifier方法

此处,文本词频统计向量会将这些句子向量化。这便是词袋的含义。

 ## implement BAG OF WORDS
countvector=CountVectorizer(ngram_range=(2,2))
traindataset=countvector.fit_transform(headlines)## implement RandomForest Classifier
randomclassifier=RandomForestClassifier(n_estimators=200,criterion='entropy')
randomclassifier.fit(traindataset,train['Label'])
在测试集上进行预测

 

现在我们将对测试集进行与训练集相同的特征转换。

 

 ## Predict for the Test Dataset
test_transform= []
for row in range(0,len(test.index)):test_transform.append(' '.join(str(x) for x in test.iloc[row,2:27]))
test_dataset = countvector.transform(test_transform)
predictions = randomclassifier.predict(test_dataset)
最后,检查准确性 

 

在这里,我们将利用分类报告,混淆矩阵和准确率分数来检查模型的准确性。

 matrix = confusion_matrix(test['Label'],predictions)
print(matrix)
score = accuracy_score(test['Label'],predictions)
print(score)
report = classification_report(test['Label'],predictions)
print(report)

我们终于完成了所有步骤。

现在,假设你想预测明天股价涨跌,只需对排名前25的头条新闻应用本文中介绍的转换方法,然后将其输入到模型中,模型就会输出0或1,来表示明天的股票会不会上涨。

这就是如何利用新闻标题来进行股票情感分析的方法。

关于作者

Ronil Patil是一个终身学习者,对深度学习,NLP,机器学习和物联网充满热情。

Ronil Patil

https://www.linkedin.com/in/ronil08/

原文标题:

Stock Price Movement Based On News Headline

原文链接:

https://www.analyticsvidhya.com/blog/2021/05/stock-price-movement-based-on-news-headline

译者简介:王闯(Chuck),台湾清华大学资讯工程硕士。曾任奥浦诺管理咨询公司数据分析主管,现任尼尔森市场研究公司数据科学经理。很荣幸有机会通过数据派THU微信公众平台和各位老师、同学以及同行前辈们交流学习。

END

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于推荐 :基于新闻标题的股价走势分析(附链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379309

相关文章

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方