python 时间序列预测 —— prophet

2023-11-09 18:40

本文主要是介绍python 时间序列预测 —— prophet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • prophet 安装
  • 数据集下载
  • prophet 实战
    • 导入包
    • pandas 读取 csv 数据
    • 画个图
    • 拆分数据集
    • 从日期中拆分特征
    • 使用 prophet 训练和预测
    • prophet 学到了什么
    • 放大图

prophet 安装

prophet 是facebook 开源的一款时间序列预测工具包,直接用 conda 安装 fbprophet 即可

prophet 的官网:https://facebook.github.io/prophet/

prophet 中文意思是“先知”

prophet 的输入一般具有两列:dsy

ds(datestamp) 列应为 Pandas 可以识别的日期格式,日期应为YYYY-MM-DD,时间戳则应为YYYY-MM-DD HH:MM:SS

y列必须是数值

数据集下载

Metro Interstate Traffic Volume Data Set
在这里插入图片描述
在这里插入图片描述

prophet 实战

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsfrom sklearn.metrics import mean_squared_error, mean_absolute_error%matplotlib inline
plt.rcParams['font.sans-serif'] = 'SimHei'  #显示中文
plt.rcParams['axes.unicode_minus'] = False  #显示负号
plt.rcParams['figure.dpi'] = 200
plt.rcParams['text.color'] = 'black'
plt.rcParams['font.size'] = 20
plt.style.use('ggplot')
print(plt.style.available)
# ['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', 'tableau-colorblind10', '_classic_test']

pandas 读取 csv 数据

csv_files = 'Metro_Interstate_Traffic_Volume.csv'
df = pd.read_csv(csv_files)
df.set_index('date_time',inplace=True)
df.index = pd.to_datetime(df.index)
df.head()

在这里插入图片描述
略扫一眼表格内容,主要有假期、气温、降雨、降雪、天气类型等因素,因变量是交通流量traffic_volume

df.info()
'''
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 48204 entries, 2012-10-02 09:00:00 to 2018-09-30 23:00:00
Data columns (total 8 columns):
holiday                48204 non-null object
temp                   48204 non-null float64
rain_1h                48204 non-null float64
snow_1h                48204 non-null float64
clouds_all             48204 non-null int64
weather_main           48204 non-null object
weather_description    48204 non-null object
traffic_volume         48204 non-null int64
dtypes: float64(3), int64(2), object(3)
memory usage: 3.3+ MB
'''df.describe()

在这里插入图片描述

画个图

原来少了一点数据,不过影响不大

traffic = df[['traffic_volume']]
traffic[:].plot(style='--', figsize=(15,5), title='traffic_volume')
plt.show()

在这里插入图片描述

拆分数据集

知识点:pandas 中筛选日期

traffic_train = traffic.loc[(traffic.index >='2017-01') & (traffic.index <= '2018-03')].copy()
traffic_test = traffic.loc[traffic.index > '2018-03'].copy()
_ = traffic_test.rename(columns={'traffic_volume': 'TEST SET'})\.join(traffic_train.rename(columns={'traffic_volume': 'TRAINING SET'}),how='outer') \.plot(figsize=(20,5), title='traffic_volume', style='.')

在这里插入图片描述
因为是逐小时统计的数据,只选两年的量就已经够多了

从日期中拆分特征

虽然 prophet 不需要我们手工提取特征,但我们还是可以自己试试

def create_features(df, label=None):"""Creates time series features from datetime index."""df = df.copy()df['date'] = df.indexdf['hour'] = df['date'].dt.hourdf['dayofweek'] = df['date'].dt.dayofweekdf['quarter'] = df['date'].dt.quarterdf['month'] = df['date'].dt.monthdf['year'] = df['date'].dt.yeardf['dayofyear'] = df['date'].dt.dayofyeardf['dayofmonth'] = df['date'].dt.daydf['weekofyear'] = df['date'].dt.weekofyearX = df[['hour','dayofweek','quarter','month','year','dayofyear','dayofmonth','weekofyear']]if label:y = df[label]return X, yreturn XX, y = create_features(traffic, label='traffic_volume')
features_and_target = pd.concat([X, y], axis=1)
features_and_target.head()

在这里插入图片描述
自己体会一下不同特征对预测变量的影响

sns.pairplot(features_and_target.dropna(),hue='hour',x_vars=['hour','dayofweek','dayofmonth','month'],y_vars='traffic_volume',height=5,plot_kws={'alpha':0.15, 'linewidth':0})
plt.suptitle('Traffic Volume by Hour, Day of Week, Day of Month and Month')
plt.show()

在这里插入图片描述
上面的 pairplot 可以得出什么信息呢?

首先颜色是按照小时取,所以每种颜色代表一个时辰

后三幅图的竖条上的颜色分布代表不同时间段的流量分布

有意义的信息主要来自散点的分布范围,可以看出:

  1. 每日的车流量呈现 M 型,意味着上下班高峰
  2. 一周中周末车要少些
  3. 一个月中有几天的下限要低于其它日子,这应该是周末
  4. 一年中有7月和9月的下限要低于其它月份,这应该和天气或者节假日有什么关联

使用 prophet 训练和预测

from fbprophet import Prophet# Setup and train model and fit
model = Prophet()model.fit(traffic_train.reset_index().rename(columns={'date_time':'ds','traffic_volume':'y'}))traffic_test_pred = model.predict(df=traffic_test.reset_index() \.rename(columns={'date_time':'ds'}))

画出预测结果

f, ax = plt.subplots(1)
f.set_figheight(5)
f.set_figwidth(15)
ax.scatter(traffic_test.index, traffic_test['traffic_volume'], color='r')
fig = model.plot(traffic_test_pred, ax=ax)

在这里插入图片描述
造成这种现象是因为:

  1. 训练数据太多,使得模型没有把握最近趋势
  2. 预测范围太大,误差随时间放大

感兴趣的朋友可以自己玩玩

prophet 学到了什么

从下图可以看出:

  1. 总体趋势:下行
  2. 每周趋势:工作日流量大、周末流量低
  3. 每日趋势:早晚上下班高峰,所以每天流量基本呈现 M 型曲线
fig = model.plot_components(traffic_test_pred)

在这里插入图片描述

放大图

看看模型对测试集中第一个月的预测情况:

# Plot the forecast with the actuals
f, ax = plt.subplots(1)
f.set_figheight(5)
f.set_figwidth(15)
plt.plot(traffic_test.index, traffic_test['traffic_volume'], color='r')
fig = model.plot(traffic_test_pred, ax=ax)
ax.set_xbound(lower='03-01-2018',upper='04-01-2018')
ax.set_ylim(-1000, 8000)
plot = plt.suptitle('Forecast vs Actuals')

在这里插入图片描述
是不是有模有样的 😉

在这里插入图片描述

这篇关于python 时间序列预测 —— prophet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/itnerd/article/details/104689158
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/377900

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)