数字图像与机器视觉基础补充(2)——图像处理和分割车牌

本文主要是介绍数字图像与机器视觉基础补充(2)——图像处理和分割车牌,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、将彩色图像文件转换为灰度文件
    • (一)使用openCV
  • (二)不使用openCV
  • 二、将彩色图像(RGB)转为HSV、HSI 格式
    • (1)彩色图像转化为HSV格式
    • (2)彩色图像转化为HSI格式
  • 三、车牌分割成单个字符
  • 四、总结
  • 五、参考链接

一、将彩色图像文件转换为灰度文件

(一)使用openCV

1.代码

import cv2 as cv
img = cv.imread('./lena.png',1)
img_1 = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
cv.imshow('gray',img_1)
cv.imshow('colour',img)
cv.waitKey(0)

2.运行结果
在这里插入图片描述

(二)不使用openCV

1.代码

from PIL import Image
I = Image.open('C:/Users/86199/Pictures/lena/lena.jpg')
L = I.convert('L')
L.show()

2.运行结果
在这里插入图片描述

二、将彩色图像(RGB)转为HSV、HSI 格式

(1)彩色图像转化为HSV格式

1.代码

#彩色图像转化为HSV格式
# open-cv library is installed as cv2 in python
# import cv2 library into this program
import cv2 as cv# read an image using imread() function of cv2
# we have to  pass only the path of the image
img = cv.imread('./lena.png',1)# displaying the image using imshow() function of cv2
# In this : 1st argument is name of the frame
# 2nd argument is the image matrixcv.imshow('original image',img)# converting the colourfull image into HSV format image
# using cv2.COLOR_BGR2HSV argument of
# the cvtColor() function of cv2
# in this :
# ist argument is the image matrix
# 2nd argument is the attribute
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)# displaying the Hsv format image
cv.imshow('HSV format image',hsv)cv.waitKey(0)cv.waitKey(0)

(2)彩色图像转化为HSI格式

1.代码

#彩色图像转化为HSI格式
import cv2
import numpy as npdef rgbtohsi(rgb_lwpImg):rows = int(rgb_lwpImg.shape[0])cols = int(rgb_lwpImg.shape[1])b, g, r = cv2.split(rgb_lwpImg)# 归一化到[0,1]b = b / 255.0g = g / 255.0r = r / 255.0hsi_lwpImg = rgb_lwpImg.copy()H, S, I = cv2.split(hsi_lwpImg)for i in range(rows):for j in range(cols):num = 0.5 * ((r[i, j]-g[i, j])+(r[i, j]-b[i, j]))den = np.sqrt((r[i, j]-g[i, j])**2+(r[i, j]-b[i, j])*(g[i, j]-b[i, j]))theta = float(np.arccos(num/den))if den == 0:H = 0elif b[i, j] <= g[i, j]:H = thetaelse:H = 2*3.14169265 - thetamin_RGB = min(min(b[i, j], g[i, j]), r[i, j])sum = b[i, j]+g[i, j]+r[i, j]if sum == 0:S = 0else:S = 1 - 3*min_RGB/sumH = H/(2*3.14159265)I = sum/3.0# 输出HSI图像,扩充到255以方便显示,一般H分量在[0,2pi]之间,S和I在[0,1]之间hsi_lwpImg[i, j, 0] = H*255hsi_lwpImg[i, j, 1] = S*255hsi_lwpImg[i, j, 2] = I*255return hsi_lwpImg
if __name__ == '__main__':rgb_lwpImg = cv2.imread("./lena.png")hsi_lwpImg = rgbtohsi(rgb_lwpImg)cv2.imshow('lena.jpg', rgb_lwpImg)cv2.imshow('hsi_lwpImg', hsi_lwpImg)key = cv2.waitKey(0) & 0xFFif key == ord('q'):cv2.destroyAllWindows()

2.运行结果
在这里插入图片描述

三、车牌分割成单个字符

1.共有五个车牌需要修改名称
在这里插入图片描述
修改为
在这里插入图片描述

2.分割字符步骤

(1)灰度转换:将彩色图片转换为灰度图像,常见的R=G=B=像素平均值。
(2)高斯平滑和中值滤波:去除噪声。
(3)Sobel算子:提取图像边缘轮廓,X方向和Y方向平方和开跟。
(4)二值化处理:图像转换为黑白两色,通常像素大于127设置为255,小于设置为0。
(5)膨胀和细化:放大图像轮廓,转换为一个个区域,这些区域内包含车牌。
(6)通过算法选择合适的车牌位置,通常将较小的区域过滤掉或寻找蓝色底的区域。
(7)标注车牌位置
(8)图像切割和识别

3.代码

#车牌分割
import cv2
import numpy as np
import osdef stackImages(scale, imgArray):"""将多张图像压入同一个窗口显示:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半:param imgArray:元组嵌套列表,需要排列的图像矩阵:return:输出图像"""rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)# 用空图片补齐for i in range(rows):tmp = cols - len(imgArray[i])for j in range(tmp):img = np.zeros((imgArray[0][0].shape[0], imgArray[0][0].shape[1]), dtype='uint8')imgArray[i].append(img)# 判断维数if rows>=2:width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]else:width = imgArray[0].shape[1]height = imgArray[0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2:imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver
# 分割结果输出路径
output_dir = "./output"
# 车牌路径
file_path="./car/"
# 读取所有车牌
cars = os.listdir(file_path)
cars.sort()# 循环操作每一张车牌
for car in cars:# 读取图片print("正在处理"+file_path+car)src = cv2.imread(file_path+car)img = src.copy()# 预处理去除螺丝点cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)# 转灰度gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 二值化adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 333, 1)# 闭运算kernel = np.ones((5, 5), int)morphologyEx = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_CLOSE, kernel)# 找边界contours, hierarchy = cv2.findContours(morphologyEx, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 画边界img_1 = img.copy()cv2.drawContours(img_1, contours, -1, (0, 0, 0), -1)imgStack = stackImages(0.7, ([src, img, gray], [adaptive_thresh, morphologyEx, img_1]))cv2.imshow("imgStack", imgStack)cv2.waitKey(0)# 转灰度为了方便切割gray_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2GRAY)# 每一列的白色数量white = []# 每一列的黑色数量black = []# 区域高度取决于图片高height = gray_1.shape[0]# 区域宽度取决于图片宽width = gray_1.shape[1]# 最大白色数量white_max = 0# 最大黑色数量black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0  # 这一列白色总数t = 0  # 这一列黑色总数for j in range(height):if gray_1[j][i] == 255:s += 1if gray_1[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)# 找到右边界def find_end(start):end = start + 1for m in range(start + 1, width - 1):# 基本全黑的列视为边界if black[m] >= black_max * 0.95:  # 0.95这个参数请多调整,对应下面的0.05end = mbreakreturn end# 临时变量n = 1# 起始位置start = 1# 结束位置end = 2# 分割结果数量num=0# 分割结果res = []# 保存分割结果路径,以图片名命名output_path= output_dir + car.split('.')[0]if not os.path.exists(output_path):os.makedirs(output_path)# 从左边网右边遍历while n < width - 2:n += 1# 找到白色即为确定起始地址# 不可以直接 white[n] > white_maxif white[n] > 0.05 * white_max:start = n# 找到结束坐标end = find_end(start)# 下一个的起始地址n = end# 确保找到的是符合要求的,过小不是车牌号if end - start > 10:# 分割char = gray_1[1:height, start - 5:end + 5]# 保存分割结果到文件cv2.imwrite(output_path+'/' + str(num) + '.jpg',char)num+=1# 重新绘制大小char = cv2.resize(char, (300, 300), interpolation=cv2.INTER_CUBIC)# 添加到结果集合res.append(char)# cv2.imshow("imgStack", char)# cv2.waitKey(0)# 构造结果元祖方便结果展示res2 = (res[:2], res[2:4], res[4:6], res[6:])# 显示结果imgStack = stackImages(0.5, res2)cv2.imshow("imgStack", imgStack)cv2.waitKey(0)
cv2.destroyAllWindows()

4.运行结果
在这里插入图片描述
运行过程会出现下面的图片,叉掉即可
在这里插入图片描述
在这里插入图片描述
会生成五个文件夹,里面有分割的字符
在这里插入图片描述例如car3
在这里插入图片描述

四、总结

本次实验再次学习了图像的颜色处理,了解学习了对车牌的字符分割

五、参考链接

数字图像处理

这篇关于数字图像与机器视觉基础补充(2)——图像处理和分割车牌的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377707

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键