数字图像与机器视觉基础#2

2023-11-09 18:00

本文主要是介绍数字图像与机器视觉基础#2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、数字图像处理
    • 1.1彩色图像文件转换为灰度文件
      • 使用Opencv
      • 不使用Opencv
    • 1.2将彩色图像(RGB)转为HSV、HSI 格式
      • 图像格式简介
        • 1. RGB模型
        • 2. HSV模型
        • 3.HSI的模型
  • 二、分割车牌
    • 使用Opencv
  • 总结

一、数字图像处理

1.1彩色图像文件转换为灰度文件

  • 灰度图像(gray image)是每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑色与白色两种颜色;但是,灰度图像在黑色与白色之间还有许多级的颜色深度。灰度图像经常是在单个电磁波频谱如可见光内测量每个像素的亮度得到的,用于显示的灰度图像通常用每个采样像素8位的非线性尺度来保存,这样可以有256级灰度(如果用16位,则有65536级)。

使用Opencv

import cv2 as cvimage = cv.imread('lena.png')
gray_image = cv.cvtColor(image, code=cv.COLOR_BGR2GRAY)# 显示图片
cv.imshow('image', gray_image)
cv.waitKey(0)
cv.destroyAllWindows()

在这里插入图片描述

不使用Opencv

rom PIL import Image
Img = Image.open('lena.png')
Img.show()
Le = Img.convert('L')
Le.show()

在这里插入图片描述

1.2将彩色图像(RGB)转为HSV、HSI 格式

图像格式简介

1. RGB模型

三维坐标:

原点到白色顶点的中轴线是灰度线,r、g、b三分量相等,强度可以由三分量的向量表示。

用RGB来理解色彩、深浅、明暗变化:

色彩变化: 三个坐标轴RGB最大分量顶点与黄紫青YMC色顶点的连线

深浅变化:RGB顶点和CMY顶点到原点和白色顶点的中轴线的距离

明暗变化:中轴线的点的位置,到原点,就偏暗,到白色顶点就偏亮。

2. HSV模型

倒锥形模型:

这个模型就是按色彩、深浅、明暗来描述的。

H是色彩

S是深浅, S = 0时,只有灰度

V是明暗,表示色彩的明亮程度,但与光强无直接联系。

3.HSI的模型

色 调(Hue):是指一种纯色的颜色属性,(色调与波长有关,是人对不同颜色的感受);
饱和度(Saturation ):是指纯色被白光稀释的程度的度量,(饱和度越大越鲜艳);
亮 度(Intensity):是一个主观因子,实际上是不可度量的,(亮度和图像灰度是颜色的明亮程度)。
通俗地讲,H=色相;决定是什么颜色,S=饱和度(纯度);决定颜色浓淡,B=明度(亮度);决定照射在颜色上的白光有多亮。这个解释是我见过真正一句话说明白HSI是什么的回答。

  • 转HSV
mport cv2 as cv
image = cv.imread('Lena.png')
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
# 显示图片
cv.imshow('hsv',hsv)
# 等待键盘输入
cv.waitKey(0)

在这里插入图片描述

  • 转HSI
import cv2
import numpy as npdef rgbtohsi(rgb_lwpImg):rows = int(rgb_lwpImg.shape[0])cols = int(rgb_lwpImg.shape[1])b, g, r = cv2.split(rgb_lwpImg)# 归一化到[0,1]b = b / 255.0g = g / 255.0r = r / 255.0hsi_lwpImg = rgb_lwpImg.copy()H, S, I = cv2.split(hsi_lwpImg)for i in range(rows):for j in range(cols):num = 0.5 * ((r[i, j]-g[i, j])+(r[i, j]-b[i, j]))den = np.sqrt((r[i, j]-g[i, j])**2+(r[i, j]-b[i, j])*(g[i, j]-b[i, j]))theta = float(np.arccos(num/den))if den == 0:H = 0elif b[i, j] <= g[i, j]:H = thetaelse:H = 2*3.14169265 - thetamin_RGB = min(min(b[i, j], g[i, j]), r[i, j])sum = b[i, j]+g[i, j]+r[i, j]if sum == 0:S = 0else:S = 1 - 3*min_RGB/sumH = H/(2*3.14159265)I = sum/3.0# 输出HSI图像,扩充到255以方便显示,一般H分量在[0,2pi]之间,S和I在[0,1]之间hsi_lwpImg[i, j, 0] = H*255hsi_lwpImg[i, j, 1] = S*255hsi_lwpImg[i, j, 2] = I*255return hsi_lwpImgif __name__ == '__main__':rgb_lwpImg = cv2.imread("lena.png")hsi_lwpImg = rgbtohsi(rgb_lwpImg)cv2.imshow('hsi_lwpImg', hsi_lwpImg)key = cv2.waitKey(0) & 0xFFif key == ord('q'):cv2.destroyAllWindows()

在这里插入图片描述

二、分割车牌

首先将车牌号图片进行灰阶化,接着计算出5%时候的pixel阀值threshold,最后对灰阶图进行二值化操作。
除掉车牌号的四周被白色的边框包围的干扰,接着就是根据车牌图片的垂直投影宽度和积累的数值,进行字符分割。

使用Opencv

  • 代码
import cv2
import numpy as np
import os
def stackImages(scale, imgArray):"""将多张图像压入同一个窗口显示:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半:param imgArray:元组嵌套列表,需要排列的图像矩阵:return:输出图像"""rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)# 用空图片补齐for i in range(rows):tmp = cols - len(imgArray[i])for j in range(tmp):img = np.zeros((imgArray[0][0].shape[0], imgArray[0][0].shape[1]), dtype='uint8')imgArray[i].append(img)# 判断维数if rows>=2:width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]else:width = imgArray[0].shape[1]height = imgArray[0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2:imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver
# 分割结果输出路径
output_dir = "D:\\MyworkSpace\\Spyder\\bmp\\pint\\"
# 车牌路径
file_path="D:\\MyworkSpace\\Spyder\\bmp\\pin\\"
# 读取所有车牌
cars = os.listdir(file_path)
cars.sort()# 循环操作每一张车牌
for car in cars:# 读取图片print("正在处理"+file_path+car)src = cv2.imread(file_path+car)img = src.copy()# 预处理去除螺丝点cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)# 转灰度gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 二值化adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 333, 1)# 闭运算kernel = np.ones((5, 5), int)morphologyEx = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_CLOSE, kernel)# 找边界contours, hierarchy = cv2.findContours(morphologyEx, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 画边界img_1 = img.copy()cv2.drawContours(img_1, contours, -1, (0, 0, 0), -1)imgStack = stackImages(0.7, ([src, img, gray], [adaptive_thresh, morphologyEx, img_1]))cv2.imshow("imgStack", imgStack)cv2.waitKey(0)# 转灰度为了方便切割gray_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2GRAY)# 每一列的白色数量white = []# 每一列的黑色数量black = []# 区域高度取决于图片高height = gray_1.shape[0]# 区域宽度取决于图片宽width = gray_1.shape[1]# 最大白色数量white_max = 0# 最大黑色数量black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0  # 这一列白色总数t = 0  # 这一列黑色总数for j in range(height):if gray_1[j][i] == 255:s += 1if gray_1[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)# 找到右边界def find_end(start):end = start + 1for m in range(start + 1, width - 1):# 基本全黑的列视为边界if black[m] >= black_max * 0.95:  # 0.95这个参数请多调整,对应下面的0.05end = mbreakreturn end# 临时变量n = 1# 起始位置start = 1# 结束位置end = 2# 分割结果数量num=0# 分割结果res = []# 保存分割结果路径,以图片名命名output_path= output_dir + car.split('.')[0]if not os.path.exists(output_path):os.makedirs(output_path)# 从左边网右边遍历while n < width - 2:n += 1# 找到白色即为确定起始地址# 不可以直接 white[n] > white_maxif white[n] > 0.05 * white_max:start = n# 找到结束坐标end = find_end(start)# 下一个的起始地址n = end# 确保找到的是符合要求的,过小不是车牌号if end - start > 10:# 分割char = gray_1[1:height, start - 5:end + 5]# 保存分割结果到文件cv2.imwrite(output_path+'/' + str(num) + '.jpg',char)num+=1# 重新绘制大小char = cv2.resize(char, (300, 300), interpolation=cv2.INTER_CUBIC)# 添加到结果集合res.append(char)# cv2.imshow("imgStack", char)# cv2.waitKey(0)# 构造结果元祖方便结果展示res2 = (res[:2], res[2:4], res[4:6], res[6:])# 显示结果imgStack = stackImages(0.5, res2)cv2.imshow("imgStack", imgStack)cv2.waitKey(0)
  • 图像进行灰度化和二值化处理
    在这里插入图片描述

在这里插入图片描述

  • 分割结果
    在这里插入图片描述
    在这里插入图片描述

总结

  • 在使用OpenCV现成的包下,对图像的处理会简单很多。熟悉OpenCV的基本原理之后处理图像处理方面更方便。

这篇关于数字图像与机器视觉基础#2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377703

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键