OpenGL Transformation 几何变换的顺序概要(MVP,NDC,Window坐标变换过程)

本文主要是介绍OpenGL Transformation 几何变换的顺序概要(MVP,NDC,Window坐标变换过程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenGL Transformation 几何变换的顺序概要(MVP,NDC,Window坐标变换过程)

Geometry transforming or culling sequence:

  • application passing the vertex pos(object space pos) to the shader program。
  • transforming of clip space pos from object space pos by mulipling the MVP matrix
    • to world space pos from object space pos by multipling the model/world matrix
      ( x w o r l d y w o r l d z w o r l d ) = M m o d e l / w o r l d ( x o b j y o b j z o b j ) \left( \begin{matrix} x_{\color{#aaaaaa}world}\\ y_{\color{#aaaaaa}world}\\ z_{\color{#aaaaaa}world} \end{matrix} \right)= M_{\color{#aaaaaa}model/world} \left( \begin{matrix} x_{\color{#aaaaaa}obj}\\ y_{\color{#aaaaaa}obj}\\ z_{\color{#aaaaaa}obj} \end{matrix} \right) xworldyworldzworld =Mmodel/world xobjyobjzobj
    • to view space pos from world space pos by multipling the view/camera/eye matrix
      • right-hand coordinates
        ( x e y e y e y e z e y e ) = M m o d e l V i e w ( x o b j y o b j z o b j ) = M v i e w ⋅ M m o d e l / w o r l d ( x o b j y o b j z o b j ) \left( \begin{matrix} x_{\color{#aaaaaa}eye}\\ y_{\color{#aaaaaa}eye}\\ z_{\color{#aaaaaa}eye} \end{matrix} \right)= M_{\color{#aaaaaa}modelView} \left( \begin{matrix} x_{\color{#aaaaaa}obj}\\ y_{\color{#aaaaaa}obj}\\ z_{\color{#aaaaaa}obj} \end{matrix} \right)= M_{\color{#aaaaaa}view} \cdot M_{\color{#aaaaaa}model/world} \left( \begin{matrix} x_{\color{#aaaaaa}obj}\\ y_{\color{#aaaaaa}obj}\\ z_{\color{#aaaaaa}obj} \end{matrix} \right) xeyeyeyezeye =MmodelView xobjyobjzobj =MviewMmodel/world xobjyobjzobj
    • to projection/clip space pos from view space pos by multipling the projective/clip matrix
      ( x c l i p y c l i p z c l i p ) = M p r o j e c t ( x e y e y e y e z e y e ) \left( \begin{matrix} x_{\color{#aaaaaa}clip}\\ y_{\color{#aaaaaa}clip}\\ z_{\color{#aaaaaa}clip} \end{matrix} \right)= M_{\color{#aaaaaa}project} \left( \begin{matrix} x_{\color{#aaaaaa}eye}\\ y_{\color{#aaaaaa}eye}\\ z_{\color{#aaaaaa}eye} \end{matrix} \right) xclipyclipzclip =Mproject xeyeyeyezeye
      • culling the vertex which − w c l i p > x y z c l i p > w c l i p -w_{\color{#aaaaaa}clip}>xyz_{\color{#aaaaaa}clip}>w_{\color{#aaaaaa}clip} wclip>xyzclip>wclip
        • add edge/vertex when culling occurs。
      • only reserve the vertex which − w c l i p < x y z c l i p < w c l i p -w_{\color{#aaaaaa}clip}<xyz_{\color{#aaaaaa}clip}<w_{\color{#aaaaaa}clip} wclip<xyzclip<wclip
      • projection/clip space pos still are Homogeneouse coordinates
        • to perspective effect, transforming to NDC space (Euclidean/Cartesian space) from projection/clip space pos, then dividing by the w c l i p w_{\color{#aaaaaa}clip} wclip x y z n d c = x y z c l i p / w c l i p xyz_{\color{#aaaaaa}ndc}=xyz_{\color{#aaaaaa}clip}/w_{\color{#aaaaaa}clip} xyzndc=xyzclip/wclip
  • to NDC(Normalized Device Coordinates) space, just using clip space pos divide by w c l i p w_{\color{#aaaaaa}clip} wclip
    ∵ e y e s p a c e i s r i g h t − h a n d c o o r d i n a t e s ∴ w c l i p = − z c l i p ∴ ( x c l i p y c l i p z c l i p w c l i p → ( − z c l i p ) ) = [ ⋅ ⋯ ⋯ ⋅ ⋮ ⋱ ⋱ ⋮ ⋅ ⋯ ⋯ ⋅ 0 0 − 1 0 ] ( x e y e y e y e z e y e w e y e ) ( x n d c y n d c z n d c ) = ( x c l i p / w c l i p y c l i p / w c l i p z c l i p / w c l i p ) { − w c l i p < x y z n d c < w c l i p x y z n d c = x y z c l i p / w c l i p − 1 < x y z n d c < 1 \because eye \space space \space is \space right-hand \space coordinates\\ \therefore w_{\color{#aaaaaa}clip}=-z_{\color{#aaaaaa}clip}\\ \therefore\left( \begin{matrix} x_{\color{#aaaaaa}clip}\\ y_{\color{#aaaaaa}clip}\\ z_{\color{#aaaaaa}clip}\\ w_{\color{#aaaaaa}clip} \rightarrow ({\color{#ff0000}-z_{\color{#aaaaaa}clip}})\\ \end{matrix} \right)= \begin{bmatrix} \cdot & \cdots & \cdots & \cdot \\ \vdots & \ddots & \ddots & \vdots \\ \cdot & \cdots & \cdots & \cdot \\ 0 & 0 & \color{#ff0000}-1 & 0 \end{bmatrix} \left( \begin{matrix} x_{\color{#aaaaaa}eye}\\ y_{\color{#aaaaaa}eye}\\ \color{#ff0000}z_{\color{#aaaaaa}eye}\\ \color{#ff0000}w_{\color{#aaaaaa}eye} \end{matrix} \right)\\ \left( \begin{matrix} x_{\color{#aaaaaa}ndc}\\ y_{\color{#aaaaaa}ndc}\\ z_{\color{#aaaaaa}ndc} \end{matrix} \right)= \left( \begin{matrix} x_{\color{#aaaaaa}clip}/w_{\color{#aaaaaa}clip}\\ y_{\color{#aaaaaa}clip}/w_{\color{#aaaaaa}clip}\\ z_{\color{#aaaaaa}clip}/w_{\color{#aaaaaa}clip} \end{matrix} \right) \begin{cases} -w_{\color{#aaaaaa}clip}<xyz_{\color{#aaaaaa}ndc}<w_{\color{#aaaaaa}clip}\\ xyz_{\color{#aaaaaa}ndc}=xyz_{\color{#aaaaaa}clip}/w_{\color{#aaaaaa}clip}\\ -1<xyz_{\color{#aaaaaa}ndc}<1 \end{cases} eye space is righthand coordinateswclip=zclip xclipyclipzclipwclip(zclip) = 0010 xeyeyeyezeyeweye xndcyndczndc = xclip/wclipyclip/wclipzclip/wclip wclip<xyzndc<wclipxyzndc=xyzclip/wclip1<xyzndc<1
    • w c l i p = − z c l i p w_{\color{#aaaaaa}clip}=-z_{\color{#aaaaaa}clip} wclip=zclip see OpenGL Projection Matrix。
    • NDC like a cube, [l,r] range [-1,1], [b,t] range [-1,1], [-n,-f] range [-1,1],see Perspective Projection。
  • to mapping Window Coordinates (Screen Coordinates), using glViewport(x,y,w,h), glDepthRange(n,f) functions set the parameters of mapping, see following formula:

( x w i n d o w / s c r e e n y w i n d o w / s c r e e n z w i n d o w / s c r e e n ) = ( w 2 x n d c + ( x + w 2 ) h 2 y n d c + ( y + h 2 ) f − n 2 z n d c + ( f + n ) 2 ) { x w i n d o w = { − 1 ⇒ x 1 ⇒ x + w y w i n d o w = { − 1 ⇒ y 1 ⇒ y + h z w i n d o w = { − 1 ⇒ n 1 ⇒ f \left( \begin{matrix} x_{\color{#aaaaaa}window/screen}\\ y_{\color{#aaaaaa}window/screen}\\ z_{\color{#aaaaaa}window/screen} \end{matrix} \right)= \left( \begin{matrix} \frac{w}{2}x_{\color{#aaaaaa}ndc}+\left(x+\frac{w}{2}\right) \\ \frac{h}{2}y_{\color{#aaaaaa}ndc}+\left(y+\frac{h}{2}\right) \\ \frac{f-n}{2}z_{\color{#aaaaaa}ndc}+\frac{\left(f+n\right)}{2} \end{matrix} \right) \begin{cases} x_{\color{#aaaaaa}window}= \begin{cases} -1 \Rightarrow x \\ 1 \Rightarrow x+w \\ \end{cases}\\ y_{\color{#aaaaaa}window}= \begin{cases} -1 \Rightarrow y \\ 1 \Rightarrow y+h \\ \end{cases}\\ z_{\color{#aaaaaa}window}= \begin{cases} -1 \Rightarrow n \\ 1 \Rightarrow f \\ \end{cases}\\ \end{cases} xwindow/screenywindow/screenzwindow/screen = 2wxndc+(x+2w)2hyndc+(y+2h)2fnzndc+2(f+n) xwindow={1x1x+wywindow={1y1y+hzwindow={1n1f


参考前辈一文:纹理投影,里面有 GPU-GEMS 一图
在这里插入图片描述


References

  • LaTeX 各种命令,符号
  • OpenGL Transformation
    • Object Space Coordinates
    • Eye Space Coordinates
    • Clip Space Coordinates
    • NDC(Normalized Device Coordinates)
      • Perspective Projection
    • Window Coordinates (Screen Coordinates)
    • OpenGL Projection Matrix
    • Homogeneous Coordinates

这篇关于OpenGL Transformation 几何变换的顺序概要(MVP,NDC,Window坐标变换过程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/377400

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller