【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二)

2023-11-09 13:39

本文主要是介绍【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JavaPairRDD的aggregateByKey方法讲解
官方文档说明
Aggregate the values of each key, using given combine functions and a neutral
"zero value". This function can return a different result type, U, than the type of
the values in this RDD, V. Thus, we need one operation for merging a V into 
a U and one operation for merging two U's. The former operation is used for
merging values within a partition, and the latter is used for merging values between
partitions. To avoid memory allocation, both of these functions are allowed to modify 
and return their first argument instead of creating a new U.Parameters:
zeroValue - (undocumented)
seqFunc - (undocumented)
combFunc - (undocumented)
Returns:
(undocumented)
中文含义

aggregateByKey函数对PairRDD中相同Key的值进行聚合操作,在聚合过程中同样使用了一个中立的初始值。和aggregate函数类似,aggregateByKey返回值的类型不需要和RDD中value的类型一致。因为aggregateByKey是对相同Key中的值进行聚合操作,所以aggregateByKey函数最终返回的类型还是Pair RDD,对应的结果是Key和聚合好的值;而aggregate函数直接是返回非RDD的结果,这点需要注意。在实现过程中,定义了三个aggregateByKey函数原型,但最终调用的aggregateByKey函数都一致。

方法原型
// Scala
def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
// java
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,Partitioner partitioner,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,int numPartitions,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)

第一个aggregateByKey函数我们可以自定义Partitioner。除了这个参数之外,其函数声明和aggregate很类似;其他的aggregateByKey函数实现最终都是调用这个。
第二个aggregateByKey函数可以设置分区的个数(numPartitions),最终用的是HashPartitioner。
最后一个aggregateByKey实现先会判断当前RDD是否定义了分区函数,如果定义了则用当前RDD的分区;如果当前RDD并未定义分区 ,则使用HashPartitioner。

实例
public class AggregateByKey {public static void main(String[] args) {System.setProperty("hadoop.home.dir","F:\\hadoop-2.7.1");SparkConf conf = new SparkConf().setMaster("local").setAppName("TestSpark");JavaSparkContext sc = new JavaSparkContext(conf);JavaPairRDD<String,Integer> javaPairRDD = sc.parallelizePairs(Lists.<Tuple2<String, Integer>>newArrayList(new Tuple2<String, Integer>("cat",3),new Tuple2<String, Integer>("dog",33),new Tuple2<String, Integer>("cat",16),new Tuple2<String, Integer>("tiger",66)),2);// 打印样例数据javaPairRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {System.out.println("样例数据>>>>>>>" + stringIntegerTuple2);}});JavaPairRDD<String,Integer> javaPairRDD1 = javaPairRDD.aggregateByKey(14, new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) throws Exception {System.out.println("seqOp>>>>>  参数One:"+v1+"--参数Two:"+v2);return Math.max(v1,v2);}}, new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) throws Exception {System.out.println("combOp>>>>>  参数One:"+v1+"--参数Two:"+v2);return v1+v2;}});// 打印结果数据javaPairRDD1.foreach(new VoidFunction<Tuple2<String, Integer>>() {public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {System.out.println("结果数据>>>>>>>" + stringIntegerTuple2);}});}
}
结果
// 打印样例数据 这里的分区是两个 其中分区内都有一个相同key值
19/03/03 22:16:07 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
样例数据>>>>>>>(cat,3)
样例数据>>>>>>>(dog,33)
19/03/03 22:16:07 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
样例数据>>>>>>>(cat,16)
样例数据>>>>>>>(tiger,66)
19/03/03 22:16:07 INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
// 第一个分区比较大小 14 3 => 14(cat) , 14  33 => 33(dog)
seqOp>>>>>  参数One:14--参数Two:3
seqOp>>>>>  参数One:14--参数Two:33
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 4 ms
19/03/03 22:16:07 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 76 ms on localhost (executor driver) (1/2)
// 第二个分区比较 14 16 => 16(cat) ,14 66 => 66(tiger)
seqOp>>>>>  参数One:14--参数Two:16
seqOp>>>>>  参数One:14--参数Two:66
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 4 ms
// 这个就是combOp阶段 在不同分区内 相同key的值做聚合操作 也就是(cat)14 + (cat)16 = 30 
combOp>>>>>  参数One:14--参数Two:16
// 最后结果 
结果数据>>>>>>>(dog,33)
结果数据>>>>>>>(cat,30)
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
结果数据>>>>>>>(tiger,66)
解析
一定要记住: combOp 是聚合的不同分区相同key的值

从上述过程中,我们就能明白流程是什么了。

  1. seqOp
    开始我们的数据是:
    分片1:(cat,3) (dog,33)
    分片2:(cat,16) (tiger,66)

     	// 这里只有两个分片 所以写两个过程 第一个分片开始seqOp过程:14(zeroValue) 和  3(cat) 比较  = 14(结果1),14(zeroValue) 和  33(dog) 比较  = 14(结果2)第二个分片开始元素聚合过程:14(zeroValue) 和  16(cat) 比较  = 14(结果3),14(zeroValue) 和  66(tiger) 比较  = 14(结果4)
    
  2. combOp(不同分区相同key值)

     	开始分片combOp过程:cat在不同分区有相同key值结果1  + 结果3 = 30(结果5)最终得到的结果2 ,结果4,结果5 结果数据>>>>>>>(dog,33)结果数据>>>>>>>(cat,30)结果数据>>>>>>>(tiger,66)
    

如果有什么不明白的评论留言即可。

这篇关于【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376446

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Spring创建Bean的八种主要方式详解

《Spring创建Bean的八种主要方式详解》Spring(尤其是SpringBoot)提供了多种方式来让容器创建和管理Bean,@Component、@Configuration+@Bean、@En... 目录引言一、Spring 创建 Bean 的 8 种主要方式1. @Component 及其衍生注解

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I