【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二)

2023-11-09 13:39

本文主要是介绍【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JavaPairRDD的aggregateByKey方法讲解
官方文档说明
Aggregate the values of each key, using given combine functions and a neutral
"zero value". This function can return a different result type, U, than the type of
the values in this RDD, V. Thus, we need one operation for merging a V into 
a U and one operation for merging two U's. The former operation is used for
merging values within a partition, and the latter is used for merging values between
partitions. To avoid memory allocation, both of these functions are allowed to modify 
and return their first argument instead of creating a new U.Parameters:
zeroValue - (undocumented)
seqFunc - (undocumented)
combFunc - (undocumented)
Returns:
(undocumented)
中文含义

aggregateByKey函数对PairRDD中相同Key的值进行聚合操作,在聚合过程中同样使用了一个中立的初始值。和aggregate函数类似,aggregateByKey返回值的类型不需要和RDD中value的类型一致。因为aggregateByKey是对相同Key中的值进行聚合操作,所以aggregateByKey函数最终返回的类型还是Pair RDD,对应的结果是Key和聚合好的值;而aggregate函数直接是返回非RDD的结果,这点需要注意。在实现过程中,定义了三个aggregateByKey函数原型,但最终调用的aggregateByKey函数都一致。

方法原型
// Scala
def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
// java
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,Partitioner partitioner,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,int numPartitions,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)
public <U> JavaPairRDD<K,U> aggregateByKey(U zeroValue,Function2<U,V,U> seqFunc,Function2<U,U,U> combFunc)

第一个aggregateByKey函数我们可以自定义Partitioner。除了这个参数之外,其函数声明和aggregate很类似;其他的aggregateByKey函数实现最终都是调用这个。
第二个aggregateByKey函数可以设置分区的个数(numPartitions),最终用的是HashPartitioner。
最后一个aggregateByKey实现先会判断当前RDD是否定义了分区函数,如果定义了则用当前RDD的分区;如果当前RDD并未定义分区 ,则使用HashPartitioner。

实例
public class AggregateByKey {public static void main(String[] args) {System.setProperty("hadoop.home.dir","F:\\hadoop-2.7.1");SparkConf conf = new SparkConf().setMaster("local").setAppName("TestSpark");JavaSparkContext sc = new JavaSparkContext(conf);JavaPairRDD<String,Integer> javaPairRDD = sc.parallelizePairs(Lists.<Tuple2<String, Integer>>newArrayList(new Tuple2<String, Integer>("cat",3),new Tuple2<String, Integer>("dog",33),new Tuple2<String, Integer>("cat",16),new Tuple2<String, Integer>("tiger",66)),2);// 打印样例数据javaPairRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {System.out.println("样例数据>>>>>>>" + stringIntegerTuple2);}});JavaPairRDD<String,Integer> javaPairRDD1 = javaPairRDD.aggregateByKey(14, new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) throws Exception {System.out.println("seqOp>>>>>  参数One:"+v1+"--参数Two:"+v2);return Math.max(v1,v2);}}, new Function2<Integer, Integer, Integer>() {public Integer call(Integer v1, Integer v2) throws Exception {System.out.println("combOp>>>>>  参数One:"+v1+"--参数Two:"+v2);return v1+v2;}});// 打印结果数据javaPairRDD1.foreach(new VoidFunction<Tuple2<String, Integer>>() {public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {System.out.println("结果数据>>>>>>>" + stringIntegerTuple2);}});}
}
结果
// 打印样例数据 这里的分区是两个 其中分区内都有一个相同key值
19/03/03 22:16:07 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
样例数据>>>>>>>(cat,3)
样例数据>>>>>>>(dog,33)
19/03/03 22:16:07 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
样例数据>>>>>>>(cat,16)
样例数据>>>>>>>(tiger,66)
19/03/03 22:16:07 INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
// 第一个分区比较大小 14 3 => 14(cat) , 14  33 => 33(dog)
seqOp>>>>>  参数One:14--参数Two:3
seqOp>>>>>  参数One:14--参数Two:33
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 4 ms
19/03/03 22:16:07 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 76 ms on localhost (executor driver) (1/2)
// 第二个分区比较 14 16 => 16(cat) ,14 66 => 66(tiger)
seqOp>>>>>  参数One:14--参数Two:16
seqOp>>>>>  参数One:14--参数Two:66
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 4 ms
// 这个就是combOp阶段 在不同分区内 相同key的值做聚合操作 也就是(cat)14 + (cat)16 = 30 
combOp>>>>>  参数One:14--参数Two:16
// 最后结果 
结果数据>>>>>>>(dog,33)
结果数据>>>>>>>(cat,30)
19/03/03 22:16:08 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
结果数据>>>>>>>(tiger,66)
解析
一定要记住: combOp 是聚合的不同分区相同key的值

从上述过程中,我们就能明白流程是什么了。

  1. seqOp
    开始我们的数据是:
    分片1:(cat,3) (dog,33)
    分片2:(cat,16) (tiger,66)

     	// 这里只有两个分片 所以写两个过程 第一个分片开始seqOp过程:14(zeroValue) 和  3(cat) 比较  = 14(结果1),14(zeroValue) 和  33(dog) 比较  = 14(结果2)第二个分片开始元素聚合过程:14(zeroValue) 和  16(cat) 比较  = 14(结果3),14(zeroValue) 和  66(tiger) 比较  = 14(结果4)
    
  2. combOp(不同分区相同key值)

     	开始分片combOp过程:cat在不同分区有相同key值结果1  + 结果3 = 30(结果5)最终得到的结果2 ,结果4,结果5 结果数据>>>>>>>(dog,33)结果数据>>>>>>>(cat,30)结果数据>>>>>>>(tiger,66)
    

如果有什么不明白的评论留言即可。

这篇关于【SparkAPI JAVA版】JavaPairRDD——aggregateByKey(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376446

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1