线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法

本文主要是介绍线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 性质
    • 1.1 重要性质梳理
      • 1.1.1 转置和初等变换
      • 1.1.2加法行列式可拆分
      • 1.1.3 乘积行列式可拆分
    • 1.2 行列式性质的应用
      • 1.2.1 简化运算
      • 1.2.2 将行列式转换为(二)中的特殊行列式
  • 2 特殊行列式
    • 2.1 上三角或下三角行列式
    • 2.2 三叉行列式
    • 2.3 行列式行和(列和)为定值
    • 2.4 对称行列式和反对称行列式
    • 2.5 范德蒙行列式
  • 3.求行列式值的基本方法
    • 3.1 行列式定义
    • 3.2 行列式性质
    • 3.3 行列式的展开
    • 3.4 加边法
    • 3.5 归纳法

​ 方阵行列式包含着大量的信息

​ 首先它直接告诉我们行列式是否可逆,如果为零则不可逆,如果不为零则可逆

​ 它可

1. 性质

1.1 重要性质梳理

1.1.1 转置和初等变换

  1. 对于转置,值不变 | A T A^T AT|=| A A A|

  2. 对于交换行列式的任意两行,行列式值变号

    ​ 可以证明若某两行相同,则行列式值为0

  3. 对于某一行(列)乘一个数K,等于给矩阵的行列式乘K

    ​ 注意区别|kA|与 k|A| 其中 $|kA|=k^n|A| $ (A为n阶矩阵)

  4. 对于某一行(列)加上另一行(列)的k倍,行列式值不变

1.1.2加法行列式可拆分

​ 行列式的某一行都为两项之和,可以拆分为两行项之和(和的那一行分开,其余行保持不变)。

1.1.3 乘积行列式可拆分

设 A B 为n阶方阵,则|AB|=|A||B| 更一般的有|A1A2…As|=|A1||A2|…|As|

1.2 行列式性质的应用

1.2.1 简化运算

解:

1.2.2 将行列式转换为(二)中的特殊行列式

​ 通过行列式变换转换为特殊行列式

2 特殊行列式

2.1 上三角或下三角行列式

​ 行列式的值为对象线上的元素的乘积,这个可以用行列式的定义来证明,它是一个很重要的行列式,三叉行列式,或者是行列式和为定值的行列式最后本质上都转为了这个特殊行列式

例:

∣ 1 1 2 3 0 − 1 1 7 0 0 3 2 0 0 0 4 ∣ = 1 × − 1 × 3 × 4 = − 12 \begin{vmatrix}1&1&2&3&\\0&-1&1&7\\0&0&3&2\\0&0&0&4\end{vmatrix}=1×-1×3×4=-12 1000110021303724 =1×1×3×4=12

2.2 三叉行列式

​ 本质上需要转换为1 中的上三角或下三角行列式 KP88 1T

​ 例:计算n阶行列式 ∣ 1 1 1 ⋯ 1 − 1 2 0 ⋯ 0 − 1 0 3 ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ 0 − 1 0 ⋯ 0 n ∣ \begin{vmatrix}1&1&1&\cdots&1\\-1&2&0&\cdots&0\\-1&0&3&\ddots&\vdots\\\vdots&\vdots&\ddots&\ddots&0\\-1&0&\cdots&0&n\end{vmatrix} 111112001030100n

​ 解:解决办法就是把主对角线下(上)的元素都变为零,对于本题的话,左下角都为-1,因而可以把第二列乘二分之一加到第一列上去,第三列乘三分之一加到第一列上去……可以得到如下 ∣ 1 + 1 2 + 1 3 + . . . + 1 n 1 1 ⋯ 1 0 2 0 ⋯ 0 0 0 3 ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ 0 0 0 ⋯ 0 n ∣ \begin{vmatrix}1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}&1&1&\cdots&1\\0&2&0&\cdots&0\\0&0&3&\ddots&\vdots\\\vdots&\vdots&\ddots&\ddots&0\\0&0&\cdots&0&n\end{vmatrix} 1+21+31+...+n100012001030100n

​ 进而采用主对角线上元素相乘即可得到结果 n ! ( 1 + 1 2 + 1 3 + . . . + 1 n ) n! (1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}) n!(1+21+31+...+n1)

2.3 行列式行和(列和)为定值

如果行和或者列和为定值时,一般采取的方法是将各行(列)加到某一行(列),提取公因式

​ 例:

​ 解:

2.4 对称行列式和反对称行列式

​ (1)反对称行列式 主对角线上全为零,主对角上下对应元素相反

​ 如: ∣ 0 1 2 − 1 0 3 − 2 − 3 0 ∣ \begin{vmatrix}0&1&2 \\-1&0&3\\-2&-3&0\end{vmatrix} 012103230 反对称行列式有一个重要性质 A T = − A A^T=-A AT=A 基于这一性质,我们可以推出若反对称行列式为奇数阶 ,则行列式值为零,左面这个行列式即为零 ,证明 因为 A T = − A A^T=-A AT=A 所以 ∣ A T ∣ = ∣ − A ∣ = ( − 1 ) n ∣ A ∣ |A^T|=|-A|=(-1)^n|A| AT=A=1nA 当n为奇数,则有 ∣ A T ∣ = − ∣ A ∣ |A^T|=-|A| AT=A 又因为转置行列式值不变 ,所以 ∣ A ∣ = − ∣ A ∣ |A|=-|A| A=A 则|A|只能为0

​ (2)对称行列式 主对角线上元素无要求,主对角上下对应元素相等

​ 如: ∣ 1 1 2 1 2 3 2 3 0 ∣ \begin{vmatrix}1&1&2 \\1&2&3\\2&3&0\end{vmatrix} 112123230

2.5 范德蒙行列式

​ 范德蒙行列式

3.求行列式值的基本方法

3.1 行列式定义

​ 用行列式定义求的矩阵具有较多的零元素的特征,相应元素取过之后所在列所在行就不能再取元素了

例1 求A= ∣ 1 1 0 0 2 − 1 0 0 0 0 3 0 0 0 4 4 ∣ \begin{vmatrix}1&1&0&0&\\2&-1&0&0\\0&0&3&0\\0&0&4&4\end{vmatrix} 1200110000340004

​ 解: A=1×(-1)×3×4+(-1)×1×2×3×4=-36

拓展C P9 1T 3T

3.2 行列式性质

​ 利用(一)中的行列式性质,如加法行列式可拆性,基本变换等结合一些行列式两行成比例结果为零的一些推论

例2 求A= ∣ a 2 ( a + 1 ) 2 ( a + 2 ) 2 ( a + 3 ) 2 b 2 ( b + 1 ) 2 ( b + 2 ) 2 ( b + 3 ) 2 c 2 ( c + 1 ) 2 ( c + 2 ) 2 ( c + 3 ) 2 d 2 ( d + 1 ) 2 ( d + 2 ) 2 ( d + 3 ) 2 ∣ \begin{vmatrix}a^2&(a+1)^2&(a+2)^2 &(a+3)^2\\b^2&(b+1)^2&(b+2)^2 &(b+3)^2\\c^2&(c+1)^2&(c+2)^2 &(c+3)^2\\d^2&(d+1)^2&(d+2)^2 &(d+3)^2\\\end{vmatrix} a2b2c2d2(a+1)2(b+1)2(c+1)2(d+1)2(a+2)2(b+2)2(c+2)2(d+2)2(a+3)2(b+3)2(c+3)2(d+3)2

​ 解: ∣ a 2 ( a + 1 ) 2 ( a + 2 ) 2 ( a + 3 ) 2 b 2 ( b + 1 ) 2 ( b + 2 ) 2 ( b + 3 ) 2 c 2 ( c + 1 ) 2 ( c + 2 ) 2 ( c + 3 ) 2 d 2 ( d + 1 ) 2 ( d + 2 ) 2 ( d + 3 ) 2 ∣ \begin{vmatrix}a^2&(a+1)^2&(a+2)^2 &(a+3)^2\\b^2&(b+1)^2&(b+2)^2 &(b+3)^2\\c^2&(c+1)^2&(c+2)^2 &(c+3)^2\\d^2&(d+1)^2&(d+2)^2 &(d+3)^2\\\end{vmatrix} a2b2c2d2(a+1)2(b+1)2(c+1)2(d+1)2(a+2)2(b+2)2(c+2)2(d+2)2(a+3)2(b+3)2(c+3)2(d+3)2 = ∣ a 2 a 2 + 2 a + 1 a 2 + 4 a + 4 a 2 + 6 a + 9 b 2 b 2 + 2 b + 1 b 2 + 4 b + 4 b 2 + 6 b + 9 c 2 c 2 + 2 c + 1 c 2 + 4 c + 4 c 2 + 6 c + 9 d 2 d 2 + 2 d + 1 d 2 + 4 d + 4 d 2 + 6 d + 9 ∣ \begin{vmatrix}a^2&a^2+2a+1&a^2+4a+4 &a^2+6a+9\\b^2&b^2+2b+1&b^2+4b+4 &b^2+6b+9\\c^2&c^2+2c+1&c^2+4c+4 &c^2+6c+9\\d^2&d^2+2d+1&d^2+4d+4 &d^2+6d+9\\\end{vmatrix} a2b2c2d2a2+2a+1b2+2b+1c2+2c+1d2+2d+1a2+4a+4b2+4b+4c2+4c+4d2+4d+4a2+6a+9b2+6b+9c2+6c+9d2+6d+9

​ 将右边完全拆开后,一共有3×3×3=27种组合相加,但每种组合总会有成比例的两列,因而最后行列式=0

3.3 行列式的展开

行列式的展开本质是降阶,是一种非常重要的方法,降阶的话有可以得到二阶三阶行列式方便计算,或者是我们可以得到一种递推关系式(n阶矩阵)

(1)如 ∣ 1 1 3 0 2 − 1 1 0 5 6 3 0 1 2 4 4 ∣ \begin{vmatrix}1&1&3&0&\\2&-1&1&0\\5&6&3&0\\1&2&4&4\end{vmatrix} 1251116231340004 可按最后一列展开,则可以直接降解为三阶行列式,我们发现某一行(列)的零越多越好,多一个零就少算一个行列式。

有时候某一列的零不是很多,但是我们又没有其他好的方法计算,我们可以先进行一些变换,使得某一列或某一行的零变多,进而简化运算,如要求 ∣ 1 1 3 1 2 − 1 1 2 5 6 3 3 1 2 4 4 ∣ \begin{vmatrix}1&1&3&1&\\2&-1&1&2\\5&6&3&3\\1&2&4&4\end{vmatrix} 1251116231341234 我们可以先用第二行减去二倍的第一行,第三行减去三倍的第一行,第四行减去四倍的第一行,得到 ∣ 1 1 3 1 0 − 3 − 5 0 2 3 − 6 0 − 3 − 2 − 8 0 ∣ \begin{vmatrix}1&1&3&1&\\0&-3&-5&0\\2&3&-6&0\\-3&-2&-8&0\end{vmatrix} 1023133235681000 按最后一列展开即可降阶为三阶**-** ∣ 0 − 3 − 5 2 3 − 6 − 3 − 2 − 8 ∣ \begin{vmatrix}0&-3&-5&\\2&3&-6&\\-3&-2&-8\end{vmatrix} 023332568 记得前面的负号不要丢掉,再按第一列展开即可得到两个二阶行列式

(2)对于n阶矩阵,我们不可能降阶到二阶三阶,但是我们可以找到递推关系式进而求出答案

3.4 加边法

​ 基于行列式展开让行列式升阶

3.5 归纳法

​ 解:

这篇关于线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375600

相关文章

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

SQL Server 查询数据库及数据文件大小的方法

《SQLServer查询数据库及数据文件大小的方法》文章介绍了查询数据库大小的SQL方法及存储过程实现,涵盖当前数据库、所有数据库的总大小及文件明细,本文结合实例代码给大家介绍的非常详细,感兴趣的... 目录1. 直接使用SQL1.1 查询当前数据库大小1.2 查询所有数据库的大小1.3 查询每个数据库的详

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

Python如何调用另一个类的方法和属性

《Python如何调用另一个类的方法和属性》在Python面向对象编程中,类与类之间的交互是非常常见的场景,本文将详细介绍在Python中一个类如何调用另一个类的方法和属性,大家可以根据需要进行选择... 目录一、前言二、基本调用方式通过实例化调用通过类继承调用三、高级调用方式通过组合方式调用通过类方法/静