安全多方计算之SPDZ开源库语法详解——Sint

2023-11-09 06:30

本文主要是介绍安全多方计算之SPDZ开源库语法详解——Sint,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全类型:sint (Secret integer in the protocol-specific domain.)

Most non-linear operations require compile-time parameters for bit length and statistical security. They default to the global parameters set by program.set_bit_length() and program.set_security(). The acceptable minimum for statistical security is considered to be 40. The defaults for the parameters is output at the beginning of the compilation.

If the computation domain is modulo a power of two, the operands will be truncated to the bit length, and the security parameter does not matter. Modulo prime, the behaviour is undefined and potentially insecure if the operands are longer than the bit length.

sint是SPDZ定义的安全类型,属于隐私数据,只用通过特定的方法才能公开。

目录

1. __init__()

2. get_input_from()、get_raw_input_from()

3. reveal_to()

4. get_random_int()

5. get_random()

6. 比较运算

7. 取相反数、取绝对值

8. pow2()、__rpow__()

9. 移位操作

10.long_one()

11.int_div()

12. mod2m()

13. __mod__()

14. bit_decompose()

15. if_else(a,b)

1. __init__()

__init__(val=Nonesize=None)

Parameters:
  • val – initialization (sint/cint/regint/int/cgf2n or list thereof)
  • size – vector size (int), defaults to 1 or size of list
a = sint()
sint.__init__(a)
a.__init__(10)
print_str("a: %s\n", a.reveal())

2. get_input_from()、get_raw_input_from()

get_input_from(cls, player)、get_raw_input_from(cls, player)

从player中接受数据。两个函数类似。用法这里不写了,可以看下一个函数。

3. reveal_to()

reveal_to(self, player)

将sint数泄露给player。我觉得reveal这个词用的很准确,sint就是定义的秘密数,从安全方面考虑,不应该泄露给别人,这个函数是将一个秘密数reveal to 一个 player。reveal这个词可以提醒开发人员慎用。

在下面这个程序里,我定义了一个sint类型变量a,a从player0中接受数据。加一之后把它reveal给了player1。结果可以在Player-Data/Private-Output-1里查看

a = sint()
print_ln("a = %s",a.reveal())
a = sint.get_input_from(0)
a = a + 1
print_ln("a = %s",a.reveal())
a.reveal_to(1)

程序编译:

./compile.py test_sint

生成证书: 

Scripts/setup-ssl.sh 2

输入数据:

echo 1 > Player-Data/Input-P0-0

执行程序,开两个不同终端:

./semi-party.x -N 2 -p 0 test_sint
./semi-party.x -N 2 -p 1 test_sint

程序执行完毕,我们可以查看Player-Data/Private-Output-1是否有写入数据:

确实是写入了数据,但是这个数据乱码,不知道什么原因,猜测是加密过的。它生成了好几个数据文件,可以查看下,其他的数据都是空的,因为程序并没有对他们写入数据。

4. get_random_int()

get_random_int(cls, bits)  生成一个“bits”长度比特的随机数。下面例子是生成3比特长的随机数(0~7之间的随机数)

for i in range(5):a = sint.get_random_int(3)print_ln("a = %s",a.reveal())

5. get_random()

get_random(cls)

Secret random ring element according to security model. 生成一个环上的随机数。

for i in range(3):b = sint.get_random()print_ln("b = %s",b.reveal())

编译:

./compile.py test_sint

执行:  执行时可以使用-R指定环的大小(这里是2^128)。

Scripts/ring.sh -R 128 test_sint

6. 比较运算

小于:less_than = __lt__()

大于:greater_than = __gt__()

小于等于: less_equal = __le__()

大于等于: greater_equal = __ge__()

等于: equal = __eq__()

不等于: not_equal = __ne__()

a = sint(12)
b = sint(13)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
print_ln("less_than: %s", sint.__lt__(a,b).reveal())
print_ln("greater_than: %s", sint.__gt__(a,b).reveal())
print_ln("less_equal: %s", sint.__le__(a,b).reveal())
print_ln("greater_equal: %s", sint.__ge__(a,b).reveal())
print_ln("equal: %s", sint.__eq__(a,b).reveal())
print_ln("not_equal: %s", sint.__ne__(a,b).reveal()) 

 编译的时候要指定环数。程序运行结果:

7. 取相反数、取绝对值

__neg__(self)  取相反数a = 0 - a

__abs__(self) 取绝对值a = |a|

a = sint(12)
b = sint(20)
e = a - b
c1 = sint.__neg__(b-a)
c2 = sint.__neg__(a-b)
d = sint.__abs__(e)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
print_ln("c1: %s",c1.reveal())
print_ln("c2: %s",c2.reveal())
print_ln("b: %s",d.reveal())

编译的时候要加-R指定环数。它不能表示负数,所以在你打印一个负数时,他会打印0,原因未知。 

8. pow2()、__rpow__()

pow2(self, bit_length=None, security=None)   官方描述是:Secret power of two.

输出2的n次幂。一个很奇怪的函数。

平常的幂函数一般输入一个n然后计算2的n次幂。但是这个函数不是这样的。这个函数的输入是比特长度。

假设你的输入的比特长度值是 i 。再设 i 的取值在2^{j-1}+1<i<2^j, 那么这个函数随机返回序列[2^0,2^1,2^2,...,2^{2^j-1}]中的一个值。

下面程序里我执行了100次这个函数,他返回的值都是(0,2^15)之间的2次幂。(i=13时,是在2^3+1到2^4之间的,那么它的返回值都是(0, 2^{2^{4}-1})之间的2次幂。

n = 100
a = sint(0)
for i in range(n):b = a.pow2(13)print_ln("b = %s",b.reveal())

下面是部分执行结果:最大值时32768=2^15

__rpow__(self, base)

我就没见你这么糊弄的。下面是官方源代码:

    def __rpow__(self, base):""" Secret power computation. Base must be two.Uses global parameters for bit length and security. """if base == 2:return self.pow2()else:return NotImplemented

基数等于2调用pow2

基数不等于2,NotImplemented ???

9. 移位操作

__lshift__(self, other, bit_length=None, security=None) 左移

__rshift__(self, other, bit_length=None, security=None, signed=True) 右移

__rlshift__(self, other)  =  other * 2**self

__rrshift__(self, other):rlshift的逆操作

a = sint(39)
print_ln("a: %s",a.reveal())
b = a.__lshift__(2)
print_ln("b: %s",b.reveal())
c = b.__rshift__(2)
print_ln("c: %s",c.reveal())b = a.__rlshift__(2)
print_ln("b: %s",b.reveal())
c = b.__rrshift__(2).__abs__()
print_ln("c: %s",c.reveal())

10.long_one()

返回1.

不知道这个函数有什么意义。

c = sint.long_one()
print_ln("c: %s",c)

11.int_div()

int_div(self, other, bit_length=None, security=None)

除法运算,这里的除法运算是在域上的除法,我们知道在群环域中,只有域可以进行除法运算。这个函数卡了很久,只要是卡在编译和执行方法上,编译虽然通过,但执行总是出错。

这个实例计算6/3,也就是计算6*(3^{-1})计算有限域的逆大概是个耗时运算吧,运行起来特别慢。

a = sint(6)
b = sint(3)
print_ln("a: %s",a.reveal())
print_ln("b: %s",b.reveal())
c = a.int_div(b,32)
print_ln("c: %s",c.reveal())

因为是域上的运算,编译的时候可以加-F执行域的大小,也可以不加(默认为64比特):

./compile.py -F 32 test_sint

我使用了两种方法执行,一个是基于OT协议的semi-party.x;一个是基于半同态加密的hemi-party.x,大家可以感受下执行时间的差距。

               

这个函数返回值也是sint类型。下面是a、b取随机数的例子

12. mod2m()

mod2m(self, m, bit_length=None, security=None, signed=True)

模运算,模2^m

a = sint(456463)
print_ln("a = %s", a.reveal())
b = a.mod2m(1)
print_ln("b = %s mod (2^1)", b.reveal())
b = a.mod2m(2)
print_ln("b = %s mod (2^2)", b.reveal())
b = a.mod2m(3)
print_ln("b = %s mod (2^3)", b.reveal())
b = a.mod2m(4)
print_ln("b = %s mod (2^4)", b.reveal())
b = a.mod2m(5)
print_ln("b = %s mod (2^5)", b.reveal())
b = a.mod2m(6)
print_ln("b = %s mod (2^6)", b.reveal())

13. __mod__()

__mod__(self, modulus)

模运算,模数为传入的参数modulus

emmm……理论上可以模任意的modulus,但是开发者只实现了模2,其他的模数没有 实现。也就是说只有模2时才能编译通过,其他情况编译不通过。

模2时:

a = sint(456463)
print_ln("a = %s", a.reveal())
b = a.__mod__(2)
print_ln("b = %s mod (2)", b.reveal())

模其他数时报错:

14. bit_decompose()

bit_decompose(self, bit_length=None, security=None)

将整数分解为二进制

a = sint(456463)
print_ln("a = %s", a.reveal())
print_str("b = ")
b = a.bit_decompose()
for i in b:print_str("%s",i.reveal())
print_ln()a = sint(46)
print_ln("a = %s", a.reveal())
print_str("b = ")
b = a.bit_decompose()
for i in b:print_str("%s",i.reveal())
print_ln()

注意,它的分解结果应该从倒数第一个“1”开始倒着看。

15. if_else(a,b)

s = sint(1)
a = sint(12)
b = sint(13)
print_ln("%s",s.if_else(a,b).reveal())

根据定义的sint类型变量,如果该变量的值是0,则if_else()返回b;该变量的值是1,则if_else()返回a。

运行结果:

关于sint类型暂时就更到这里,没有更全,主要函数我都介绍了,还有一些有点复杂搞不明白,还有一些作者都没有实现,都比较小众,不打算更了。

这篇关于安全多方计算之SPDZ开源库语法详解——Sint的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374466

相关文章

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (