【深度学习服务器环境配置】显卡驱动、CUDA11、CUDNN及torch、tensorflow安装

本文主要是介绍【深度学习服务器环境配置】显卡驱动、CUDA11、CUDNN及torch、tensorflow安装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 丑话说在前
  • 一、了解服务器配置
    • 1.系统版本信息
    • 2.显卡信息
  • 二、安装驱动及CUDA
    • 1.驱动安装
    • 2.卸载旧CUDA(选)
    • 3.CUDA11安装
        • 1)下载安装
        • 2)配置环境变量
        • 3)查看是否安装成功
  • 三、安装CUDNN
    • 1.下载
    • 2.解压安装
    • 3.查看是否安装成功
  • 四、 安装anaconda
    • 1.下载安装
    • 2.设置环境变量
  • 五、安装深度学习库
    • 1.torch安装
    • 2.tensorflow安装
  • 总结


丑话说在前

首先,我基本是现学现卖,linux基础懂一点,深度学习基础懂一点,然后服务器也只玩过阿里云的,以下内容是配了学院四台服务器深度学习环境后总结出的笔记,希望能帮到下一个学习的你
(必要时候请掌握科学上网方法)


如果你不了解配置流程,你可以先泛读全文,了解下配置的大概流程。本文,我会从一个未安装显卡驱动和CUDA的服务器开始记录起(升级cuda的方法请从卸载旧cuda读起),内容包括安装anaconnda、cuda、cudnn以及深度学习常用库pytorch和tensorflow。可以选择你需要配置的部分阅读。

一、了解服务器配置

包括:服务器安装的系统版本信息、显卡信息等

1.系统版本信息

服务器安装的系统各不相同(window较少见),较常见的是轻量级的centos和ubuntu。

因接下来下载cuda等配件时需选择系统版本信息,所以需提前了解系统版本信息,

  • 查看linux系统版本命令:
lsb_release -a
  • 输出:

在这里插入图片描述
如图:该服务器安装的linux版本为Ubuntu16.04

2.显卡信息

如果服务器未安装显卡情况下,nvidia-smi命令输出将为空,那么要了解显卡信息需用以下命令:

lspci | grep -i nvidia

输出:
在这里插入图片描述
【这™是什么鬼.png】

由于驱动问题无法显示显卡的具体型号,在网址输入1b00,可以看到显卡型号是:TITAN X

在这里插入图片描述

二、安装驱动及CUDA

1.驱动安装


因为安装CUDA时会有选项让你选择是否安装显卡驱动,选择是,便会帮你安装好新驱动,所以无论是安装(升级)驱动还是安装(升级)CUDA,都可以选择跳过手动安装驱动步骤,直接到下一步安装cuda。

2.卸载旧CUDA(选)

如安装过cuda,想升级CUDA版本,需先卸载旧的cuda版本,卸载方法也很简单

原理(按cuda8.0):

在安装cuda时默认会安装在/usr/local/cuda-8.0文件夹下

卸载cuda8.0,则只需要运行文件夹下的uninstall文件卸载即可

命令如下:

sudo /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl

卸载之后,会发现cuda-8.0该文件夹还存在,这是cudnn文件,所以输入命令将文件删除干净:

sudo rm -rf /usr/local/cuda-8.0

同理安装cuda其他版本时默认都会安装在/usr/local/下对应的文件夹下,卸载只需运行uninstall文件即可。

3.CUDA11安装

1)下载安装

在Google(或百度)输入CUDA11.0 download
在这里插入图片描述
进入官网下载
在这里插入图片描述

根据服务器系统版本信息选择相应选项,可见支持Installer Type(安装类型)有三种,这里我们选择第一种本地运行文件(runfile)

因学院服务器并为配置完全以及其他不可抗原因(不想处理报错能力有限 )我们选择第一种安装方法。

在这里插入图片描述

基础安装指导(base Installer)显示,我们只需要运行两句命令:

下载cuda的run文件

wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run

在这里插入图片描述

使用管理员权限运行该安装文件

sudo sh cuda_11.0.2_450.51.05_linux.run

运行安装文件会显示几个可选项:
依次如下:

1 .输入:accept,接受协议
在这里插入图片描述

2.选择默认配置(包括安装驱动)Install
在这里插入图片描述

静待安装。

2)配置环境变量

修改环境变量文件~/.bashrc(该文件是在根目录下的隐藏文件,根目录下输入ls -a可见)

vim ~/.bashrc

在变量文件后加上下面三句:

export CUDA_HOME=/usr/local/cuda-11.0
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
export PATH=${CUDA_HOME}/bin:${PATH}

保存并退出(关于vim的用法如果你不是很懂的话,我这里大概说一下,进入vim编辑环境需要按 i,进入命令环境按 esc,保存并退出(在命令环境)按 :wq(w表示写,q表示退出))。

最后执行.bashrc:

source ~/.bashrc

使其生效

3)查看是否安装成功

使用命令nvcc -V查看安装版本信息:
在这里插入图片描述

三、安装CUDNN

1.下载

到官网下载对应cuda和linux版本的cudnn

先在本地电脑下载完上传到服务器,下载后格式为.solitairetheme8文件,需先转为压缩包格式后解压

执行命令:

cp  cudnn-11.0-linux-x64-v8.0.5.39.solitairetheme8 cudnn-11.0-linux-x64-v8.0.5.39.tgz
tar -zxvf  cudnn-11.0-linux-x64-v8.0.5.39.tgz

2.解压安装

解压后再拷贝文件到CUDA目录下即可:

cp cuda/lib64/* /usr/local/cuda-11.0/lib64/
cp cuda/include/* /usr/local/cuda-11.0/include/

3.查看是否安装成功

查看信息,是否安装成功

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

(网上说有输出证明是安装成功,但我本次安装的三台服务器都无输出,仔细查看对应的cudnn.h文件后发现文件中并无cudnn版本信息,个人猜测是新版的cudnn文件中无版本信息)

四、 安装anaconda

1.下载安装

  1. 官网下载linux对应版本anaconda
    下载后上传服务器
  • 查看当前目录下的文件
  • 给与安装文件可执行权限
  • 运行安装文件
ls
sudo chmod +x Anaconda3-2020.11-Linux-x86_64.sh
./Anaconda3-2020.11-Linux-x86_64.sh
  • 如图:

在这里插入图片描述

  1. 安装选项如下

回车(继续)
在这里插入图片描述

安装协议,按q退出
在这里插入图片描述

接受协议,输入yes
在这里插入图片描述

设置安装路径
在这里插入图片描述

添加配置环境,输入yes
在这里插入图片描述

静待安装完成
在这里插入图片描述
安装完成,提示告诉我们(for changes to take…)关闭旧连接打开新shell,经过我实验发现仅需要运行下环境配置文件即可。

source ~/.bashrc

此时在输入conda即有相关信息输出,安装完成

在这里插入图片描述

2.设置环境变量

上述操作虽完成了anaconda的安装,但细心的你一定发现该安装仅在该安装用户下(我的操作都是在root用户下)。所以需要添加个环境变量,使得所有用户都能使用anaconda。(也可以针对单个用户更改用户对应的.bashrc文件即可)

在已安装anaconda的用户下执行命令:

vim /etc/environment

在添加上安装anaconda路径,注意分割符":"(如我添加):

/usr/local/anconda/bin

重启,操作生效,所有用户都能使用anaconda。

五、安装深度学习库

1.torch安装

官网选择安装选项信息,使用conda命令下载安装
在这里插入图片描述

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

注意:安装pytorch时官方会顺便安装类似cudnn的包,因此我们上面也可以不用安装cudnn

  • 检测是否torch-gpu安装成功,依次输入:
python
import torch
torch.__version__
torch.cuda.is_available()

输出结果为true,安装成功
如图:
在这里插入图片描述

2.tensorflow安装

同样使用pip命令安装,如:

pip  install tensorflow-gpu==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

需要注意的是tensorflow版本与对应的cuda和cudnn版本需按官方支持版本对应
在这里插入图片描述

  • 检测是否torch-gpu安装成功,依次输入:
python
import tensorflow as tf
tf.__version__
tf.test.is_gpu_available()

输出结果为true,安装成功
如图:
在这里插入图片描述在这里插入图片描述

总结

1.服务器未安装驱动时可以跳过手动安装显卡驱动环境,直接安装cuda(安装cuda时会默认安装对应版本显卡驱动)

2.安装anconda时基本默认安装即可(安装路径可自行修改)

3.安装tensorflow库时,需注意到官网查看对应cuda版本信息,以免不兼容(不兼容时可用使用多cuda切换的方式,其实也就是安装多个版本cuda,在需要时通过修改配置文件切换对应版本)。

参考:
https://blog.csdn.net/wuzhongqiang/article/details/109703047
https://blog.csdn.net/xiao_xian_/article/details/109054598
https://blog.csdn.net/wanzhen4330/article/details/81699769

这篇关于【深度学习服务器环境配置】显卡驱动、CUDA11、CUDNN及torch、tensorflow安装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374380

相关文章

Nginx 重写与重定向配置方法

《Nginx重写与重定向配置方法》Nginx重写与重定向区别:重写修改路径(客户端无感知),重定向跳转新URL(客户端感知),try_files检查文件/目录存在性,return301直接返回永久重... 目录一.try_files指令二.return指令三.rewrite指令区分重写与重定向重写: 请求

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可