【深度学习】BERT变体—RoBERTa

2023-11-09 03:50

本文主要是介绍【深度学习】BERT变体—RoBERTa,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        RoBERTa是的BERT的常用变体,出自Facebook的RoBERTa: A Robustly Optimized BERT Pretraining Approach。来自Facebook的作者根据BERT训练不足的缺点提出了更有效的预训练方法,并发布了具有更强鲁棒性的BERT:RoBERTa。

         RoBERTa通过以下四个方面改变来改善BERT的预训练:在MLM任务中使用动态掩码而不是静态掩码;移除NSP任务,仅使用MLM任务;通过更大的批数据进行训练;使用BBPE作为分词器。

1 动态掩码

        RoBERTa使用动态掩码。BERT中,对于每一个样本序列进行mask之后,mask的tokens都固定下来了,也就是静态mask的方式。RoBERTa的训练过程中使用了动态mask的方式:对于每一个输入样本序列,都会复制10条,然后复制的每一个都会重新随机mask,其中每个句子被mask的token不同:即拥有不同的masked tokens。

         MASK结果如下所示: 

         在模型训练时,对于每个epoch,使用不同标记被[MASK]的句子喂给模型。这样模型只会在训练10个epoch之后看到具有同样掩码标记的句子。比如,句子1会被epoch1,epoch11,epoch21和epoch31看到。这样,我们使用动态掩码而不是静态掩码去训练RoBERTa模型。

2 移除NSP任务

        为了证明可以移除NSP任务,论文进行了以下对比实验:

        1.SEGMENT-PAIR+NSP: NSP任务保留。每个输入是段落(segment),每个片段由多个自然句子组成,最大长度为512;
        2.SENTENCE-PAIR+NSP:NSP任务保留。每个输入是一对自然句子,每个自然句子可是一个文本的连续部分,也可以是不同文本。因为这些输入显然少于512,因此增加了批大小,让一个批次总的单词数和SEGMENT-PAIR+NSP差不多。同时保留NSP loss;
        3.FULL-SENTENCES: 每个输入都包含从一个或多个文档中连续采样完整句子,因此总长度差不多512个单词。输入可能跨越文档边界,如果跨文档,则在上一个文档末尾添加文档边界标记。移除NSP loss;
        4.DOC-SENTENCES: 每个输入都包含从一个连续采样的完整句子,输入格式和FULL-SENTENCES类似,除了它们不会跨域文档边界。在文档末尾附近采样的输入可能短于 512 个单词,所以动态增加了批大小让单词总数和FULL-SENTENCES类似。移除NSP loss;

        实验结果如下图所示: 

        从实验结果看,BERT在FULL-SENTENCESDOC-SENTENCES设定中表现的更好,这两者都剔除了NSP任务。对比FULL-SENTENCESDOC-SENTENCES,DOC-SENTENCES只从一篇文档中采样,此种设定的表现比FULL-SENTENCES在多篇文档中采样要好。但在RoBERTa中,作者使用了FULL-SENTENCES,因为DOC-SENTENCES导致批大小变化很大。

3 更大规模训练数据

3-3-1 训练语料

        BERT的预训练语料是 BOOKCORPUS+English WIKIPEDIA的16GB语料。RoBERT除了在Toronto BookCorpus和英文维基百科上进行训练,还在CC-News(Common Crawl-News)数据集、Open WebText和Stories(Common Crawl的子集)上进行训练。RoBERT模型在5个数据集上进行预训练,这5个数据集总大小为160G。

3-3-2 batch size

        BERT预训练的batch size为256,训练了1M步。而RoBERTa则使用了更大的batch size,训练RoBERTa时采样了更大的批大小,达到了8000,训练了300000步。在同样的批大小上,也训练了一个更长训练步的版本,有500000步。训练一个更大的批大小可以增加训练速度同时也可以优化模型的表现。

4 BBPE作为分词器

        BERT使用WordPiece分词器。WordPicce分词器类似于BPE分词器,它基于符号对的概率还不是频率来合并符号对。

        而RoBERTa使用BBPE作为分词器。BBPE基于字节级序列,先将文本转换为字节级序列,然后应用BPE算法根据字节级符号对构建词表,BERT使用30000大小的词表,RoBERTa使用大约50000大小的词表。

5 Roberta使用

#导入模块
from transformers import RobertaConfig, RobertaModel, RobertaTokenizer
#加载模型
Robert_model = model = RobertaModel.from_pretrained('roberta-base')
#加载分词器
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
RobertaConfig {"_name_or_path": "roberta-base","architectures": ["RobertaForMaskedLM"],"attention_probs_dropout_prob": 0.1,"bos_token_id": 0,"classifier_dropout": null,"eos_token_id": 2,"gradient_checkpointing": false,"hidden_act": "gelu","hidden_dropout_prob": 0.1,"hidden_size": 768,"initializer_range": 0.02,"intermediate_size": 3072,"layer_norm_eps": 1e-05,"max_position_embeddings": 514,"model_type": "roberta","num_attention_heads": 12,"num_hidden_layers": 12,"pad_token_id": 1,"position_embedding_type": "absolute","transformers_version": "4.10.3","type_vocab_size": 1,"use_cache": true,"vocab_size": 50265
}

Reference:
https://helloai.blog.csdn.net/article/details/120499194?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-120499194-blog-124881981.pc_relevant_3mothn_strategy_recovery&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1-120499194-blog-124881981.pc_relevant_3mothn_strategy_recovery&utm_relevant_index=2https://helloai.blog.csdn.net/article/details/120499194?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-1-120499194-blog-124881981.pc_relevant_3mothn_strategy_recovery&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-1-120499194-blog-124881981.pc_relevant_3mothn_strategy_recovery&utm_relevant_index=2

这篇关于【深度学习】BERT变体—RoBERTa的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_44750512/article/details/129320041
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/373847

相关文章

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确