PID控制在自动驾驶中的应用举例(二)航向控制

2023-11-09 01:59

本文主要是介绍PID控制在自动驾驶中的应用举例(二)航向控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇中介绍了使用PID进行车速控制,控制目标相对简单,如果加入转向的目标,任务复杂程度都会有所增加。

对于环境的配置与之前类似,不再赘述。

from matplotlib import pyplot as plt
from collections import deque
import numpy as npimport gym
import highway_env
%matplotlib inlineenv = gym.make('highway-v0')
config = \{"observation": {"type": "Kinematics","vehicles_count": 1,"features": ["presence",'x','y', "vx", "vy"],"features_range": {"x": [-100, 100],"y": [-100, 100],"vx": [-100, 100],"vy": [-100, 100]},"absolute": True,"order": "sorted"},"action": {"type": "ContinuousAction"},    "simulation_frequency": 15,  # [Hz]"policy_frequency": 5,  # [Hz]'vehicles_count': 0,'reward_speed_range': [20, 80],}

对于航向控制来说,我自己总结了一种计算方向盘转角的方式,需要输入3个矢量:汽车朝向,目的地要求的汽车朝向和汽车位置与目的地连线的朝向。目的是根据当前汽车的朝向和相对于目的地的方向推算出方向盘合适的转角度数。
方位示意图
将车辆和目的地的方向矢量相加,再与direction的矢量角度进行比较,即可确定方向盘需旋转的角度,如果δ为负(逆时针),则向左打方向盘,若为正(顺时针),向右打方向盘。角度的大小由向量夹角公式决定。
在这里插入图片描述

使用代码对以上方法进行表示:

def get_angle(v_p,v_h,dest_p,dest_h):v_head_x=np.cos(v_h)v_head_y=np.sin(v_h)  d_head_x=1*np.cos(dest_h)d_head_y=1*np.sin(dest_h)car_dir = np.array([v_head_x,v_head_y])path_dir = np.array([dest_p[0]-v_p[0],dest_p[1]-v_p[1]])dest_dir = np.array([car_dir[0]+d_head_x,car_dir[1]+d_head_y])cos_theta=np.dot(dest_dir,path_dir)/(np.linalg.norm(dest_dir)*np.linalg.norm(path_dir))left_right = 0 if np.cross(dest_dir,path_dir)==0 else abs(np.cross(dest_dir,path_dir))/np.cross(dest_dir,path_dir)angle = np.arccos(cos_theta)*left_rightreturn angle

之后可以手动指定车辆和目的地的坐标和方向,坐标是我随机设的点,对于highway-env环境来说,车道不是一个严格的物理模型,汽车开出车道也不会停止模拟。方向的范围是[0,2*pi]。

V_HEADING=np.pi
V_POSITION_X=180
V_POSITION_Y=2D_HEADING=0
D_POSITION_X=360
D_POSITION_Y=12

之后就可以使用PID等控制方法对汽车进行导航。为了在到达目的地之后停止环境模拟,可以设置一个距离函数,当汽车和目的地的距离小于2m时,认为汽车已经到达目的地,停止模拟。

def get_distance(v_p,dest_p):dis=np.sqrt((v_p[0]-dest_p[0])**2+(v_p[1]-dest_p[1])**2)return dis

传统控制

传统控制直接将δ值作为方向盘转角steering值。由于物理环境没有阻力,不用对油门踏板进行设置,汽车会一直按照初始速度匀速前进。

env.configure(config)
env.reset()
env.vehicle.heading=V_HEADING
env.vehicle.position=[V_POSITION_X,V_POSITION_Y]
dest_position=[D_POSITION_X,D_POSITION_Y]
dest_heading=D_HEADING
e=0
his_p1=[]for _ in range(300):action=[0,e]obs, reward, done, info = env.step(action)v_p=env.road.vehicles[0].positionv_h=env.vehicle.headinghis_p1.append([v_p[0],v_p[1]])angle=get_angle(v_p,v_h,dest_position,dest_heading)e = 0 if abs(angle)<0.01 else min(max(angle,-1),1)  # [-3.14,3.14] ->  [-1,1]dis = get_distance(v_p,dest_position)if dis<2:breakenv.render()
env.close()

PID控制

与速度控制类似,PID需要开辟一个buffer以便求微分和积分。

env.configure(config)
env.reset()
env.vehicle.heading=V_HEADING
env.vehicle.position=[V_POSITION_X,V_POSITION_Y]
dest_position=[D_POSITION_X,D_POSITION_Y]
dest_heading=D_HEADING
dt=0.1
buffer = deque(maxlen=10)e=0
e_p=0
e_i=0
e_d=0his_p2=[]
for _ in range(300):action=[0,e]obs, reward, done, info = env.step(action)v_p=env.road.vehicles[0].positionv_h=env.vehicle.headinghis_p2.append([v_p[0],v_p[1]])angle=get_angle(v_p,v_h,dest_position,dest_heading)    e_p = 0 if abs(angle)<0.01 else min(max(angle,-1),1)buffer.append(e_p)e_i=np.sum(buffer)*dtif len(buffer)>=2:        e_d=(buffer[-1]-buffer[-2])/dtelse:e_d=0e=e_p+0.5*e_i+0.05*e_ddis = get_distance(v_p,dest_position)if dis<2:breakenv.render()
env.close()

模拟完成后可以画出汽车行驶路径的散点图,以观察两种方法的异同

plt.figure(figsize=(12,8))
plt.scatter(np.transpose(his_p1)[0],-np.transpose(his_p1)[1])
plt.scatter(np.transpose(his_p2)[0],-np.transpose(his_p2)[1])

在这里插入图片描述
(地图里y轴正负是反的,我也不理解为啥画出来的图y轴值都是负的)

可以看出来方向控制的变化和速度控制类似,采用PID可以快速将方向调整到的和目标方向一致,但会有小幅震荡。

这篇关于PID控制在自动驾驶中的应用举例(二)航向控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373541

相关文章

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注