Python机器学习之相异性度量

2023-11-09 01:40

本文主要是介绍Python机器学习之相异性度量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

相似性和相异性是机器学习中重要的概念,因为它们被许多数据挖掘技术所采用,比如常见的聚类、最近邻分类和异常检测等。在很多情况下,一旦我们计算出了特征向量的相似性或相异性,我们就不在需要原始数据了。这类方法通常将数据变换到相似性(相异性)空间,然后在做数据分析。

2 定义

  • 相似度(similarity): 两个对象相似程度的数值度量,两个对象越相似,它们的相似度越高;通常取值为非负的,通常介于[0,1]之间。
  • 相异度(disimilarity): 两个对象差异程度的数值度量,两个对象越相似,值越低,通常取值为非负的,最小相异度为0,上界不确定。通常使用术语距离(distance)用作相异性的同义词,距离常常用来表示特定类型的相异度。 本文重点介绍常见的相异度计量函数。

3 欧式距离

欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。其计算公式如下:
请添加图片描述
代码如下:

import numpy as np
from dissimilarity__utils import *def test_euclidean():eucl = lambda x, y: np.sum((x - y)**2, axis=1)**0.5x = np.array([0, 0])dA = eucl(x, yA)dB = eucl(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'euclidean_distance', save=True)

其中 yA,yB的取值在 dissimilarity_utils里定义,如下:

r = 1
np.random.seed(123456)
y1A = np.random.uniform(-r, r, 8)
y2A = np.random.uniform(-r, r, 8)
yA = np.array([y1A, y2A]).T
M, N = 32j, 32j
s, t = np.mgrid[-r:r:N*8, -r:r:M*8]
yB = np.array([s.ravel(), t.ravel()]).T

上述代码运行结果如下:
请添加图片描述

4 曼哈顿距离

曼哈顿距离的计算公式如下:
在这里插入图片描述
代码实现如下:

def test_manhattan():manh = lambda x, y: np.sum(np.absolute(x - y), axis=1)x = np.array([0, 0])dA = manh(x, yA)dB = manh(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'manhattan_distance', save=True)

上述代码运行结果如下:
请添加图片描述

5 切比雪夫距离

国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走 试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。其计算公式如下:
在这里插入图片描述
代码实现如下:

def test_chebyshev():cheb = lambda x, y: np.max(np.absolute(x - y), axis=1)x = np.array([0, 0])dA = cheb(x, yA)dB = cheb(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'chebyshev_distance', save=True)

上述代码运行结果如下:
请添加图片描述

6 闵可夫斯基距离

闵氏距离不是一种距离,而是一组距离的定义。其计算公式如下:
在这里插入图片描述
代码实现如下:

def test_minkowski():mink = lambda x, y, p: np.sum(np.absolute(x - y) ** p, axis=1) ** (1 / p)x = np.array([0, 0])p = 2 ** -1dA = mink(x, yA, p)dB = mink(x, yB, p).reshape(s.shape)plotDist(x, dA, dB, 'minkowski_distance_A', ctitle=r'$p=2^{0}{2}{1}={3}$'.format('{', '}', -1, p), save=True)

上述代码运行结果如下:
请添加图片描述
我们可以设置不同的p值,进而来对比不同p值下的结果图,代码如下:

def test_minkowski_multi():mink = lambda x, y, p: np.sum(np.absolute(x - y) ** p, axis=1) ** (1 / p)x = np.array([0, 0])fig, axes = plt.subplots(2, 4, sharex=True, sharey=True)for j, axs in enumerate(axes):for i, ax in enumerate(axs):index = i + 4 * jexp = index - 3pi = 2 ** expd = mink(x, yB, pi).reshape(s.shape)plotContour(ax, d,r'$p=2^{0}{2}{1}={3}$'.format('{', '}', exp, pi),fsize=8)figname = 'minkowski_distance_B'fig.suptitle(' '.join([e.capitalize() for e in figname.split('_')]))fig.savefig('_output/similarity_{}.png'.format(figname), bbox_inches='tight')

运行结果如下:
请添加图片描述

7 堪培拉距离

堪培拉距离可以是曼哈顿距离的加权版本,其计算公式如下:
在这里插入图片描述
代码实现如下:

def canb(x, y):num = np.absolute(x - y)den = np.absolute(x) + np.absolute(y)return np.sum(num/den, axis = 1)def test_canberra():x = np.array([0.25, 0.25])dA = canb(x, yA)dB = canb(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'canberra_distance', save=True)

上述代码运行结果如下:
请添加图片描述

8 夹角余弦距离

几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。其计算公式如下:
在这里插入图片描述
代码实现如下:

def coss(x, y):if x.ndim == 1:x = x[np.newaxis]num = np.sum(x*y, axis=1)den = np.sum(x**2, axis = 1)**0.5den = den*np.sum(y**2, axis = 1)**0.5return 1 - num/dendef test_cosine():x = np.array([1e-7, 1e-7])dA = coss(x, yA)dB = coss(x, yB).reshape(s.shape)plotDist(x, dA, dB, 'cosine_distance', save=True)

上述代码运行结果如下:

请添加图片描述

9 总结

本文重点介绍了机器学习领域中特征向量的相似性和相异性的计算公式,并给出了常见的距离计算公式和代码实现,同时给出了不同距离的图示,方便童鞋们直观的进行理解。

您学废了嘛?

10 附录

本文参考链接如下:

链接一

链接二

关注公众号《AI算法之道》,获取更多AI算法资讯。

在这里插入图片描述



注: 完整代码,关注公众号,后台回复距离 , 即可获取。

这篇关于Python机器学习之相异性度量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373474

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财