使用CV_CUDA对图像进行Crop和Resize

2023-11-08 15:30

本文主要是介绍使用CV_CUDA对图像进行Crop和Resize,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

可能是我的使用方式不对,直接调用C++ OpenCV api比用CV_CUDA快很多。

/** SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.* SPDX-License-Identifier: Apache-2.0** Licensed under the Apache License, Version 2.0 (the "License");* you may not use this file except in compliance with the License.* You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/#include <common/NvDecoder.h>
#include <common/TestUtils.h>
#include <cuda_runtime_api.h>
#include <cvcuda/OpCustomCrop.hpp>
#include <cvcuda/OpResize.hpp>
#include <getopt.h>
#include <cmath>
#include <opencv2/opencv.hpp>
#include <nvcv/Image.hpp>
#include <nvcv/Tensor.hpp>#include <chrono>   
using namespace std;
using namespace chrono;
/*** @brief Crop and Resize sample app.** The Crop and Resize is a simple pipeline which demonstrates usage of* CVCuda Tensor along with a few operators.** Input Batch Tensor -> Crop -> Resize -> WriteImage*//*** @brief Utility to show usage of sample app***/
void showUsage()
{std::cout << "usage: ./nvcv_cropandresize_app -i <image file path or  image directory -b <batch size>" << std::endl;
}/*** @brief Utility to parse the command line arguments***/
int ParseArgs(int argc, char *argv[], std::string &imagePath, uint32_t &batchSize)
{static struct option long_options[] = {{     "help",       no_argument, 0, 'h'},{"imagePath", required_argument, 0, 'i'},{    "batch", required_argument, 0, 'b'},{          0,                 0, 0,   0}};int long_index = 0;int opt        = 0;while ((opt = getopt_long(argc, argv, "hi:b:", long_options, &long_index)) != -1){switch (opt){case 'h':showUsage();return -1;break;case 'i':imagePath = optarg;break;case 'b':batchSize = std::stoi(optarg);break;case ':':showUsage();return -1;default:break;}}std::ifstream imageFile(imagePath);if (!imageFile.good()){showUsage();std::cerr << "Image path '" + imagePath + "' does not exist\n";return -1;}return 0;
}int main(int argc, char *argv[])
{// Default parametersstd::string imagePath = "test.jpg";uint32_t    batchSize = 1;cv::Mat imgMat = cv::imread(imagePath);// Parse the command line paramaters to override the default parametersint retval = ParseArgs(argc, argv, imagePath, batchSize);if (retval != 0){return retval;}// NvJpeg is used to decode the images to the color format required.// Since we need a contiguous buffer for batched input, a buffer is// preallocated based on the  maximum image dimensions and  batch size// for NvJpeg to write into.// Note : The maximum input image dimensions needs to be updated in case// of testing with different test imagesint maxImageWidth  = 1920;int maxImageHeight = 1080;int maxChannels    = 3;// tag: Create the cuda streamcudaStream_t stream;CHECK_CUDA_ERROR(cudaStreamCreate(&stream));// tag: Allocate input tensor// Allocating memory for RGBI input image batch of uint8_t data type// without padding since NvDecode utility currently doesnt support// Padded buffers.nvcv::TensorDataStridedCuda::Buffer inBuf;inBuf.strides[3] = sizeof(uint8_t);inBuf.strides[2] = maxChannels * inBuf.strides[3];inBuf.strides[1] = maxImageWidth * inBuf.strides[2];inBuf.strides[0] = maxImageHeight * inBuf.strides[1];CHECK_CUDA_ERROR(cudaMallocAsync(&inBuf.basePtr, batchSize * inBuf.strides[0], stream));// tag: Tensor Requirements// Calculate the requirements for the RGBI uint8_t Tensor which include// pitch bytes, alignment, shape  and tensor layoutnvcv::Tensor::Requirements inReqs= nvcv::Tensor::CalcRequirements(batchSize, {maxImageWidth, maxImageHeight}, nvcv::FMT_RGB8);// Create a tensor buffer to store the data pointer and pitch bytes for each planenvcv::TensorDataStridedCuda inData(nvcv::TensorShape{inReqs.shape, inReqs.rank, inReqs.layout},nvcv::DataType{inReqs.dtype}, inBuf);// TensorWrapData allows for interoperation of external tensor representations with CVCUDA Tensor.nvcv::Tensor inTensor = nvcv::TensorWrapData(inData);// tag: Image Loading// NvJpeg is used to load the images to create a batched input device buffer.uint8_t             *gpuInput = reinterpret_cast<uint8_t *>(inBuf.basePtr);CHECK_CUDA_ERROR(cudaMemcpyAsync(gpuInput, imgMat.data, inBuf.strides[0], cudaMemcpyHostToDevice));// The total images is set to the same value as batch size for testinguint32_t             totalImages = batchSize;// Format in which the decoded output will be saved//nvjpegOutputFormat_t outputFormat = NVJPEG_OUTPUT_RGBI;//NvDecode(imagePath, batchSize, totalImages, outputFormat, gpuInput);// tag: The input buffer is now ready to be used by the operators// Set parameters for Crop and Resize// ROI dimensions to crop in the input imageint cropX      = 150;int cropY      = 50;int cropWidth  = 800;int cropHeight = 1000;// Set the resize dimensionsint resizeWidth  = 1600;int resizeHeight = 2000;//  Initialize the CVCUDA ROI structNVCVRectI crpRect = {cropX, cropY, cropWidth, cropHeight};cv::Rect Rect(cropX, cropY, cropWidth, cropHeight);auto t1=std::chrono::steady_clock::now();// 裁剪图像cv::Mat cropImg = imgMat(Rect);// 调整图像大小cv::resize(cropImg, cropImg, cv::Size(resizeWidth, resizeHeight));auto t2=std::chrono::steady_clock::now();double dr_ms=std::chrono::duration<double,std::milli>(t2-t1).count();std::cout << "opencv costs: " <<  dr_ms << "ms" << std::endl;// tag: Allocate Tensors for Crop and Resize// Create a CVCUDA Tensor based on the crop window size.nvcv::Tensor cropTensor(batchSize, {cropWidth, cropHeight}, nvcv::FMT_RGB8);// Create a CVCUDA Tensor based on resize dimensionsnvcv::Tensor resizedTensor(batchSize, {resizeWidth, resizeHeight}, nvcv::FMT_RGB8);// tag: Initialize operators for Crop and Resizecvcuda::CustomCrop cropOp;cvcuda::Resize     resizeOp;cudaEvent_t start, stop;cudaEventCreate(&start);cudaEventCreate(&stop);cudaEventRecord(start);// tag: Executes the CustomCrop operation on the given cuda streamcropOp(stream, inTensor, cropTensor, crpRect);// Resize operator can now be enqueued into the same streamresizeOp(stream, cropTensor, resizedTensor, NVCV_INTERP_LINEAR);// tag: Profile sectioncudaEventRecord(stop);cudaEventSynchronize(stop);float operatorms = 0;cudaEventElapsedTime(&operatorms, start, stop);std::cout << "Time for Crop and Resize : " << operatorms << " ms" << std::endl;// tag: Copy the buffer to CPU and write resized image into .bmp fileWriteRGBITensor(resizedTensor, stream);// tag: Clean upCHECK_CUDA_ERROR(cudaStreamDestroy(stream));// tag: End of Sample
}

输出

opencv costs: 3.16336ms
Time for Crop and Resize : 200.148 ms
Writing to ./cvcudatest_0.jpg 4800 1600 2000

这篇关于使用CV_CUDA对图像进行Crop和Resize的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370785

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV