vivado:调试工具原理及实现学习总结(调用IP核,生成IP,例化,调试)

2023-11-08 13:59

本文主要是介绍vivado:调试工具原理及实现学习总结(调用IP核,生成IP,例化,调试),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容:调用vivado提供的IP核,生成用户定制的IP,并通过HDL语言进行例化。然后通过提供的调试功能对设计进行调试,分析调试结果。
环境:VIVADO 2018.2
语言:Verilog HDL
参考书目:Xilinx FPGA权威设计指南 -Vivado 2014集成开发环境

  • 创建新的fifo调试工程
    创建工程,project name:fifo_verilog,芯片参考选择xc7a100tcsg324_1。

  • 添加FIFO IP到设计中
    在project manager中单击IP catalog,在搜索框中输入FIFO,选择并双击FIFO Generator进入参数设置在这里插入图片描述
    如图在‘Basic’以及‘Native ports’设置参数,其他默认。
    在这里插入图片描述
    在这里插入图片描述
    随后弹出“Generate Output Producta”对话框,点击Generate.

在这里插入图片描述
在IP Sources出口下,找到并单击fifo_generate_0.veo文件,可见verilog例化模板代码:

fifo_generator_0 your_instance_name (.clk(clk),      // input wire clk.srst(srst),    // input wire srst.din(din),      // input wire [7 : 0] din.wr_en(wr_en),  // input wire wr_en.rd_en(rd_en),  // input wire rd_en.dout(dout),    // output wire [7 : 0] dout.full(full),    // output wire full.empty(empty)  // output wire empty
);
  • 添加顶层设计文件
    点击Add Sources,进行add or creat design sources,设置file name:top 进行创建。其中top.v的源文件代码为:
module top(
input wire rd_trig,
input wire rst,
input wire clk,
input wire wr_trig,
output wire [7:0]dout,
output wire empty,
output wire full);
reg [7:0]data_in[5:0];
initial
begindata_in[15]=8'h0f; data_in[14]=8'h0e;data_in[13]=8'h0d;data_in[12]=8'h0c;data_in[11]=8'h0b;data_in[15]=8'h0a;data_in[15]=8'h09;data_in[15]=8'h08;data_in[7]=8'h07;data_in[6]=8'h06;data_in[6]=8'h05;data_in[4]=8'h04;data_in[3]=8'h03;data_in[2]=8'h02;data_in[1]=8'h01;data_in[0]=8'h00; 
end
reg[1:0]next_state;
parameter ini=2'b00,wr_fifo=2'b01,ready=2'b11,rd_fifo=2'b10;
reg wr_en;
reg rd_en;reg[7:0] din;reg[3:0] j;
fifo_generator_0 Inst_fifo1 (.clk(clk),      // input wire clk.srst(srst),    // input wire srst.din(din),      // input wire [7 : 0] din.wr_en(wr_en),  // input wire wr_en.rd_en(rd_en),  // input wire rd_en.dout(dout),    // output wire [7 : 0] dout.full(full),    // output wire full.empty(empty)  // output wire empty);  always@(posedge rst or posedge clk)beginif(rst)beginnext_state<=ini;j<=0;rd_en<=1'b0;wr_en<=1'b0;endelsebegincase(next_state)ini:beginj<=0;rd_en<=1'b0;if(wr_trig==1'b1)next_state<=wr_fifo;endwr_fifo:begindin<=data_in[j];if(j==15)next_state<=ready;elsebeginj<=j+1;wr_en<=1'b1;next_state<=wr_fifo;   end           endready:beginj<=0;wr_en<=1'b0;if(rd_trig==1'b1)next_state<=rd_fifo;elsenext_state<=ready;         endrd_fifo:beginif(j==15)next_state<=ini;elsebeginj<=j+1;rd_en<=1'b1;next_state<=rd_fifo;   end           endendcaseend
end 
endmodule
  • 添加约束文件
    方法一:
    Add Sources>add or create constraints,设置file name:top,创建约束文件。对top.v先进行Run synthesis,跳出的对话框选择open synthesised design,点击ok。在下拉框选择I/O Planning。
    在这里插入图片描述
    在下方出现I/O Ports窗口,选择引脚位置,然后在界面内右键单击,执行Export I/O Ports命令,弹出对话框,选中XDC,将导出路径指向当前工程top.xdc。然后将I/O Planning切换为Default Layout,可在源文件窗口双击打开查看。
    在这里插入图片描述
    方法二:
    双击top.xdc文件,直接进行代码编写:
set_property IOSTANDARD LVCMOS33 [get_ports clk]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {dout[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports empty]
set_property IOSTANDARD LVCMOS33 [get_ports full]
set_property IOSTANDARD LVCMOS33 [get_ports rd_trig]
set_property IOSTANDARD LVCMOS33 [get_ports rst]
set_property IOSTANDARD LVCMOS33 [get_ports wr_trig]
set_property PACKAGE_PIN R7 [get_ports rst]
set_property PACKAGE_PIN U9 [get_ports wr_trig]
set_property PACKAGE_PIN U8 [get_ports rd_trig]
set_property PACKAGE_PIN E3 [get_ports clk]
set_property PACKAGE_PIN U6 [get_ports {dout[7]}]
set_property PACKAGE_PIN U7 [get_ports {dout[6]}]
set_property PACKAGE_PIN T4 [get_ports {dout[5]}]
set_property PACKAGE_PIN T5 [get_ports {dout[4]}]
set_property PACKAGE_PIN T6 [get_ports {dout[3]}]
set_property PACKAGE_PIN R8 [get_ports {dout[2]}]
set_property PACKAGE_PIN V9 [get_ports {dout[1]}]
set_property PACKAGE_PIN T8 [get_ports {dout[0]}]
set_property PACKAGE_PIN P2 [get_ports empty]
set_property PACKAGE_PIN R2 [get_ports full]
  • 网表插入调试探测流程
    添加测试点:
    对top.v进行Run synthesis,跳出的对话框选择open synthesised design,点击ok。在‘Netlist’窗口下列出了所有网络节点。对‘Inst_fifo1’下的dout(8),din,rd_en,wr_en右击选择Mark debug。
    后期可在top.xdc文件中发现新增代码:
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[0]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[1]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[2]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[3]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[4]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[5]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[6]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/dout[7]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[0]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[1]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[2]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[3]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[4]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[5]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[6]}]
set_property MARK_DEBUG true [get_nets {Inst_fifo1/din[7]}]
set_property MARK_DEBUG true [get_nets Inst_fifo1/rd_en]
set_property MARK_DEBUG true [get_nets Inst_fifo1/wr_en]

设置调试内核参数:
执行命令Tools>Set up Debug,单击NEXT,按下Shift,选择4行需要调试的网络信号,右击执行select clock domain…(按照参考书籍说法,应该选择inst_fifo/clk,但此处没有出现,出现clk_IBUF_BUFC,可能是因为vivado版本问题或我的操作出错)单击ok,为调试网络制定时钟域:
在这里插入图片描述
后期我的top.xdc文件新增代码:

create_debug_core u_ila_0 ila
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 4 [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER true [get_debug_cores u_ila_0]
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_EN_STRG_QUAL true [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk_IBUF_BUFG]]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe0]
set_property port_width 8 [get_debug_ports u_ila_0/probe0]
connect_debug_port u_ila_0/probe0 [get_nets [list {Inst_fifo1/din[0]} {Inst_fifo1/din[1]} {Inst_fifo1/din[2]} {Inst_fifo1/din[3]} {Inst_fifo1/din[4]} {Inst_fifo1/din[5]} {Inst_fifo1/din[6]} {Inst_fifo1/din[7]}]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe1]
set_property port_width 8 [get_debug_ports u_ila_0/probe1]
connect_debug_port u_ila_0/probe1 [get_nets [list {Inst_fifo1/dout[0]} {Inst_fifo1/dout[1]} {Inst_fifo1/dout[2]} {Inst_fifo1/dout[3]} {Inst_fifo1/dout[4]} {Inst_fifo1/dout[5]} {Inst_fifo1/dout[6]} {Inst_fifo1/dout[7]}]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe2]
set_property port_width 1 [get_debug_ports u_ila_0/probe2]
connect_debug_port u_ila_0/probe2 [get_nets [list Inst_fifo1/rd_en]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe3]
set_property port_width 1 [get_debug_ports u_ila_0/probe3]
connect_debug_port u_ila_0/probe3 [get_nets [list Inst_fifo1/wr_en]]
set_property C_CLK_INPUT_FREQ_HZ 300000000 [get_debug_cores dbg_hub]
set_property C_ENABLE_CLK_DIVIDER false [get_debug_cores dbg_hub]
set_property C_USER_SCAN_CHAIN 1 [get_debug_cores dbg_hub]
connect_debug_port dbg_hub/clk [get_nets clk_IBUF_BUFG]

点击NEXT,勾选最下方两项复选框,最后Finish。随后生成比特流文件,下载到FPGA,当下载后 出现调试器界面。(我木得板子,此处无图),在调试窗口,找到“basic trigger setup”对话框,在debug probes窗口找到inst_fifo1/rd_en,inst_fifo1/wr_en拖入“basic trigger setup”窗口,将inst_fifo1/rd_en,inst_fifo1/wr_en比较值设为1,单击OR图示图标,执行set trigger condition to Global OR。然后找到ILA Properties,单击运行图标,查看波形。

这篇关于vivado:调试工具原理及实现学习总结(调用IP核,生成IP,例化,调试)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370315

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三