有关熵、相对熵(KL散度)、交叉熵、JS散度、Wasserstein距离的内容

2023-11-08 12:30

本文主要是介绍有关熵、相对熵(KL散度)、交叉熵、JS散度、Wasserstein距离的内容,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

  • 最近学了一些关于熵的内容,为增强自己对这些内容的理解,方便自己以后能够温习,随手记录了相关的介绍,可能有不对的地方,敬请谅解。

信息量

  • 任何事件都会承载一定的信息,事件发生的概率越大,其含有的信息量越少,事件发生的概率越小,其含有的信息量越多。比如昨天下雨了,是一个既定的事实,所以其信息量为0,天气预报说明天会下雨,是一个概率事件,其信息量相对较大。

  • 假设 X X X是一个离散型随机变量, p ( X = x 0 ) p(X=x_0) p(X=x0)表示随机变量取值为 x 0 x_0 x0的概率,那么 X = x 0 X=x_0 X=x0的信息量的计算公式:
    I ( x 0 ) = − log ⁡ ( p ( x 0 ) ) I(x_0) = -\log(p(x_0)) I(x0)=log(p(x0))

  • 熵描述的是随机变量不确定性的程度。

  • 假设随机变量 X X X n n n个取值, X X X取值为 x i x_i xi时的概率为 p ( x i ) p(x_i) p(xi),计算公式为:
    H ( X ) = − ∑ i = 0 n p ( x i ) log ⁡ ( p ( x i ) ) H(X) = -\sum_{i=0}^{n}p(x_i)\log(p(x_i)) H(X)=i=0np(xi)log(p(xi))

相对熵(KL散度)

  • 相对熵用于描述同一个变量在两个独立的概率分布之间的差异。

  • 假设 P P P表示真实分布, Q Q Q表示模型通过学习得到的预测分布,也称拟合分布。那么用 K L KL KL散度定义两个分布之间的差异:

    • P P P相对于 Q Q Q称为前向散度(常用于机器学习领域):
      D K L ( p ∣ ∣ q ) = E p ( log ⁡ ( p q ) ) = ∑ i = 0 n p ( x i ) log ⁡ ( p ( x i ) q ( x i ) ) D_{KL}(p||q) = E_p(\log(\frac{p}{q})) =\sum_{i=0}^n p(x_i) \log(\frac{p(x_i)}{q(x_i)}) DKL(p∣∣q)=Ep(log(qp))=i=0np(xi)log(q(xi)p(xi))

    • Q Q Q相对于 P P P称为反向散度(常用于强化学习邻域):
      D K L ( q ∣ ∣ p ) = E q ( log ⁡ ( q p ) ) = ∑ i = 0 n q ( x i ) log ⁡ ( q ( x i ) p ( x i ) ) D_{KL}(q||p) = E_q(\log(\frac{q}{p})) =\sum_{i=0}^n q(x_i) \log(\frac{q(x_i)}{p(x_i)}) DKL(q∣∣p)=Eq(log(pq))=i=0nq(xi)log(p(xi)q(xi))

    • 注意:上述公式,分子是哪个分布,计算KL散度参考的就是哪个分布,比如前向散度中, P P P就是参考分布,也称真实分布,而 Q Q Q就是近似分布,也称理论分布。在计算KL散度时,使用的是基于参考分布中的随机变量,也就是在计算时,我们使用的是参考分布中每个随机变量的概率值,以及近似分布中相应变量的概率值

  • 当分布 Q Q Q和分布 P P P越接近,说明这两个分布越相似,那么 K L KL KL散度值越小。

  • 由于通常情况下, D K L ( p ∣ ∣ q ) D_{KL}(p||q) DKL(p∣∣q) D K L ( q ∣ ∣ p ) D_{KL}(q||p) DKL(q∣∣p)不相等,所以KL散度不满足对称性。同时也不满足三角不等式

交叉熵

  • K L KL KL散度公式变形:
    D K L ( p ∣ ∣ q ) = ∑ i = 0 n p ( x i ) log ⁡ ( p ( x i ) ) − ∑ i = 0 n p ( x i ) log ⁡ ( q ( x i ) ) D_{KL}(p||q) = \sum_{i=0}^np(x_i)\log(p(x_i)) - \sum_{i=0}^np(x_i)\log(q(x_i)) DKL(p∣∣q)=i=0np(xi)log(p(xi))i=0np(xi)log(q(xi))

  • 上面等式中的 − ∑ i = 0 n p ( x i ) log ⁡ ( q ( x i ) ) - \sum_{i=0}^np(x_i)\log(q(x_i)) i=0np(xi)log(q(xi))就是交叉熵 H ( p , q ) H(p,q) H(p,q)

  • P P P的熵为:
    H ( p ) = − ∑ i = 0 n p ( x i ) log ⁡ ( p ( x i ) ) H(p) = -\sum_{i=0}^np(x_i)\log(p(x_i)) H(p)=i=0np(xi)log(p(xi))

  • 如果真实分布 P P P不变,那么 H ( p ) H(p) H(p)就是一个常数,所以在训练模型时,我们只需要关注交叉熵,最小化交叉熵的值。
    H ( p , q ) = − ∑ i = 0 n p ( x i ) log ⁡ ( q ( x i ) ) H(p,q) =- \sum_{i=0}^np(x_i)\log(q(x_i)) H(p,q)=i=0np(xi)log(q(xi))

JS散度

  • JS散度描述的是两个分布的相似程度。

  • 对于概率分布 P P P Q Q Q,js散度的计算公式如下:
    J S ( P ∣ ∣ Q ) = 1 2 D K L ( P ∣ ∣ M ) + 1 2 D K L ( Q ∣ ∣ M ) JS(P||Q) = \frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M) JS(P∣∣Q)=21DKL(P∣∣M)+21DKL(Q∣∣M)

  • 其中 M M M P P P Q Q Q的平均分布。平均分布的计算过程如下:

    • 对于同一个事件 i i i,假设事件 i i i P P P中发生的概率为 P ( i ) P(i) P(i),在 Q Q Q中发生的概率为 Q ( i ) Q(i) Q(i),那么事件 i i i M M M中发生的概率为:
      M ( i ) = P ( i ) + Q ( i ) 2 M(i) = \frac{P(i) + Q(i)}{2} M(i)=2P(i)+Q(i)

    • 注意:当两个分布不存在重叠部分时,计算它们的平均分布没有意义,因为事件 i i i P P P中发生,在 Q Q Q中却不发生。这里说的重叠是指 P P P Q Q Q的支撑集不相交,简单来说,就是 P P P Q Q Q的随机变量的取值集合没有交集。

  • 如果 P P P Q Q Q的分布不重叠,那么计算得到的JS散度是一个常数。(个人解释如下,不完全正确,仅供参考)

    • 如果 P P P Q Q Q的分布不重叠,根据KL散度的定义可知,在计算KL散度时,会基于参考分布的随机变量来计算,那么由此计算得到的 M M M会是相应分布的 1 2 \frac{1}{2} 21。进而 D K L ( P ∣ ∣ M ) = ∑ i = 0 n P ( x i ) log ⁡ ( P ( x i ) 1 2 P ( x i ) ) = ∑ i = 0 n P ( x i ) log ⁡ ( 2 ) = log ⁡ ( 2 ) ∑ i = 0 n p ( x i ) = log ⁡ 2 D_{KL}(P||M) = \sum_{i=0}^{n}P(x_i)\log(\frac{P(x_i)}{\frac{1}{2}P(x_i)}) = \sum_{i=0}^{n}P(x_i)\log(2) = \log(2) \sum_{i=0}^np(x_i) = \log2 DKL(P∣∣M)=i=0nP(xi)log(21P(xi)P(xi))=i=0nP(xi)log(2)=log(2)i=0np(xi)=log2,同样可以计算 D K L ( Q ∣ ∣ M ) = log ⁡ 2 D_{KL}(Q||M) = \log2 DKL(Q∣∣M)=log2,所以 J S ( P ∣ ∣ Q ) = log ⁡ 2 JS(P||Q) = \log2 JS(P∣∣Q)=log2,所以计算得到的JS散度是一个常数。

Wasserstein距离

  • 当两个分布不重叠时,计算 K L KL KL散度是无意义的,因为在 P P P中出现的事件 i i i,在 Q Q Q中不会出现,即 q ( x i ) = 0 q(x_i) = 0 q(xi)=0,而在计算 K L KL KL散度的公式中, D K L ( p ∣ ∣ q ) = ∑ i = 0 n p ( x i ) log ⁡ ( p ( x i ) q ( x i ) ) D_{KL}(p||q) =\sum_{i=0}^n p(x_i) \log(\frac{p(x_i)}{q(x_i)}) DKL(p∣∣q)=i=0np(xi)log(q(xi)p(xi)) q ( x i ) q(x_i) q(xi)是分母,所以此时 K L KL KL散度无意义。

  • Wasserstein距离用于描述两个分布之间的距离。

  • 分布 P P P Q Q Q的Wasserstein距离定义如下:
    W ( P , Q ) = i n f γ ∼ Γ ( P , Q ) E ( X , Y ) ∼ γ ( ∣ ∣ X − Y ∣ ∣ ) W(P, Q) = inf_{\gamma \sim \Gamma(P, Q) } E_{(X, Y) \sim \gamma}(||X-Y||) W(P,Q)=infγΓ(P,Q)E(X,Y)γ(∣∣XY∣∣)

    • 其中 Γ ( P , Q ) \Gamma(P, Q) Γ(P,Q)表示 P P P Q Q Q所有可能的联合分布集合, γ \gamma γ表示所有可能联邦分布中的一个, ( X , Y ) ∼ γ (X, Y)\sim \gamma (X,Y)γ表示从联合分布中随机采样一个样本 ( X , Y ) (X, Y) (X,Y) ∣ ∣ X − Y ∣ ∣ ||X - Y|| ∣∣XY∣∣表示计算样本 ( X , Y ) (X, Y) (X,Y)的距离, E ( X , Y ) ∼ γ ( ∣ ∣ X − Y ∣ ∣ ) E_{(X, Y)\sim \gamma}(||X-Y||) E(X,Y)γ(∣∣XY∣∣)表示在联合分布为 γ \gamma γ时,样本距离的期望值。整个式子也就是找到一个可能的联合分布 γ \gamma γ,使得这个期望值最小。
    • 如果把分布 P P P Q Q Q看成是土堆 A A A和土堆 B B B,那么Wassersteion距离就是将土堆 A A A,推到土堆 B B B的最少运算成本,也就是将一个分布变换为另一个分布的最小成本

Reference:https://zhuanlan.zhihu.com/p/74075915

这篇关于有关熵、相对熵(KL散度)、交叉熵、JS散度、Wasserstein距离的内容的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369857

相关文章

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

Java如何将文件内容转换为MD5哈希值

《Java如何将文件内容转换为MD5哈希值》:本文主要介绍Java如何将文件内容转换为MD5哈希值的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java文件内容转换为MD5哈希值一个完整的Java示例代码代码解释注意事项总结Java文件内容转换为MD5

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

VSCode中配置node.js的实现示例

《VSCode中配置node.js的实现示例》本文主要介绍了VSCode中配置node.js的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一.node.js下载安装教程二.配置npm三.配置环境变量四.VSCode配置五.心得一.no

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调