【难题】动态规划 NOI 162:Post Office 7624:山区建小学——找状态方程有点难 思路详细

本文主要是介绍【难题】动态规划 NOI 162:Post Office 7624:山区建小学——找状态方程有点难 思路详细,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:点击打开链接

题目大意:V个村庄,P个邮局,邮局建在村庄上,求一种建法,让V个村庄到最近邮局的距离最小

dp[i][j]:表示在1~i个村庄中建j个邮局时的路径最小值 

m[i][j]:表示从i到j只建立一个邮局的路径的最小值

若从第i个村庄到第j个村庄只选取一个作为邮局的话则选择第(i+j)/2个

一开始我没懂,直到自己画了个图,假设把在5建的邮局移到4,则其他村庄的距离变化如图,从4到3不会变化,所以除法向下取整不会有问题。


则状态转移方程:m[i][j]=m[i][j-1]+a[i]-a[(i+j)/2]

怎么理解呢?
1)i+j为偶数,有以下序列,此时在2建邮局
    1 2 3
    新加一个村庄,此时还是在2建邮局
    1 2 3 4
    则m[1][4]=m[1][3]+(4到2的距离)a[4]-a[(1+4)/2]
2)i+j为奇数,有以下序列,此时在2建邮局
    1 2 3 4
    新加一个村庄,此时在3建邮局。根据之前画的图,村庄仅有1~4时,在2、3建邮局都是路径最小值,m[1][4]不会变化
    1 2 3 4 5
    则m[1][4]=m[1][3](邮局位置变了但是值不变)+(5到3的距离)a[5]-a[(1+5)/2]

所以得:
初始化:dp[i][1]=m[1][i]

dp[i][j]=min{dp[k][j-1]+m[k+1][i]}(1<=k<i)

思路参考了这位博主:点击打开链接

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int a[301],m[301][301]={0},dp[301][31]={0};
int main()
{int V,P,i,j,sum=0,k;cin>>V;cin>>P;for (i=1;i<=V;i++){cin>>a[i];sum+=a[i];}for (i=1;i<=V;i++)for (j=i+1;j<=V;j++)m[i][j]=m[i][j-1]+a[j]-a[(i+j)/2];//初始化dpfor (i=1;i<=V;i++)for (j=2;j<=P;j++)dp[i][j]=sum;for (i=1;i<=V;i++)dp[i][1]=m[1][i];//dpfor (i=1;i<=V;i++)for (j=2;j<=P;j++)for (k=j-1;k<i;k++)//因为1~k至少j-1个邮局,所以k>=j-1,k从j-1开始遍历dp[i][j]=min(dp[i][j],dp[k][j-1]+m[k+1][i]);cout<<dp[V][P];return 0;
}

7624:山区建小学 这道题思路类似,只需在输入时处理一下

a[i]为每一个山区的位置
mi[i][j],i到j之间建一个小学的路程

dp[i][j],1~i之间建了j个小学

注意:
1、不要忘记初始化:dp[i][1]=mi[1][i]
2、要保证状态转移方程中每一项都已算出来
     k>=j-1,k+1<=i,j-1>=1即j>=2

#include<iostream>
#include<string.h>
using namespace std;
int dp[501][501],a[501],mi[501][501];
int m,n;
int main()
{int i,j,x,k;cin>>m>>n;a[1]=0;for (i=2;i<=m;i++){cin>>x;a[i]=a[i-1]+x;}for (i=0;i<=m;i++)mi[i][i]=0;for (i=1;i<=m;i++)for (j=i+1;j<=m;j++)mi[i][j]=mi[i][j-1]+a[j]-a[(i+j)/2];for (i=1;i<=m;i++)for (j=1;j<=n;j++)dp[i][j]=250000;for (i=1;i<=m;i++)dp[i][1]=mi[1][i];for (i=2;i<=m;i++)for (j=2;j<=n;j++)for (k=j-1;k<i;k++)dp[i][j]=min(dp[i][j],dp[k][j-1]+mi[k+1][i]);cout<<dp[m][n]<<endl;return 0;
}

这篇关于【难题】动态规划 NOI 162:Post Office 7624:山区建小学——找状态方程有点难 思路详细的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/369563

相关文章

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

MySQL批量替换数据库字符集的实用方法(附详细代码)

《MySQL批量替换数据库字符集的实用方法(附详细代码)》当需要修改数据库编码和字符集时,通常需要对其下属的所有表及表中所有字段进行修改,下面:本文主要介绍MySQL批量替换数据库字符集的实用方法... 目录前言为什么要批量修改字符集?整体脚本脚本逻辑解析1. 设置目标参数2. 生成修改表默认字符集的语句3

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn