ACM-ICPC2018 沈阳赛区网络预赛-D-Made In Heaven8

2023-11-08 06:21

本文主要是介绍ACM-ICPC2018 沈阳赛区网络预赛-D-Made In Heaven8,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A*算法:
A*,启发式搜索,是一种较为有效的搜索方法。
我们在搜索的时候,很多时候在当前状态,已经不是最优解了,但是我们却继续求解;这个就是暴力搜索浪费时间的原因。
我们在有些时候,往往可以根据一些信息推断出继续搜索是一种劣解。
所以如果能够判断出来的话,就可以不继续了,以达到节省运行时间的目的。
估价函数:
为了提高搜索效率,我们可以对未来可能产生的代价进行预估。我们设计一个估价函数,以任意状态输入,计算出从该状态到目标状态所需代价的估计值。
在搜索时,我们总沿着当前代价+未来估价最小的状态进行搜索。

估价函数需要满足:
  设当前状态state到目标函数所需代价的估计值为f(state)
  设在未来的搜索中,实际求出的从当前状态state到目标状态的最小代价为g(state)
  对于任意的state,应该有f(state)<=g(state)
也就是说,估价函数的估值不能大于未来实际代价,估价比实际代价更优。
第K短路:
根据估价函数的设计准则,在第K短路中从x到T的估计距离f(x)应该不大于第K短路中从x到T的实际距离g(x),于是,我们可以把估价函数f(x)定为从x到T的最短路径长度,这样不但能保证f(x)<=g(x),还能顺应g(x)的实际变化趋势。
实现过程:
1.预处理f(x),在反向图上以T为起点求到每个点的最短路
2.定义堆,维护{p,g,h},p是某一个点,g是估价,h是实际,那么g+h更小的点p会优先访问
3.取出堆顶元素u扩展,如果节点v被取出的次数尚未达到k,就把新的{v,g,h+length(u,v)}插入堆中
4.重复第2-3步,直到第K次取出终点T,此时走过的路径长度就是第K短路因为估价函数的作用,图中很多节点访问次数远小于K 

 

One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. However, Pucci the father somehow knows it and wants to stop her. There are NN spots in the jail and MM roads connecting some of the spots. JOJO finds that Pucci knows the route of the former (K-1)(K1)-th shortest path. If Pucci spots JOJO in one of these K-1K1 routes, Pucci will use his stand Whitesnake and put the disk into JOJO's body, which means JOJO won't be able to make it to the destination. So, JOJO needs to take the KK-th quickest path to get to the destination. What's more, JOJO only has TT units of time, so she needs to hurry.

JOJO starts from spot SS, and the destination is numbered EE. It is possible that JOJO's path contains any spot more than one time. Please tell JOJO whether she can make arrive at the destination using no more than TT units of time.

Input

There are at most 5050 test cases.

The first line contains two integers NN and M(1 \leq N \leq 1000, 0 \leq M \leq 10000)(1N1000,0M10000). Stations are numbered from 11 to NN.

The second line contains four numbers S, E, KS,E,K and TT ( 1 \leq S,E \leq N1S,EN, S \neq ESE, 1 \leq K \leq 100001K10000, 1 \leq T \leq 1000000001T100000000 ).

Then MM lines follows, each line containing three numbers U, VU,V and W(1 \leq U,V \leq N, 1 \leq W \leq 1000)(1U,VN,1W1000) . It shows that there is a directed road from UU-th spot to VV-th spot with time WW.

It is guaranteed that for any two spots there will be only one directed road from spot AA to spot B(1 \leq A,B \leq N, A \neq B)(1A,BN,AB), but it is possible that both directed road <A,B><A,B> and directed road <B,A><B,A>exist.

All the test cases are generated randomly.

Output

One line containing a sentence. If it is possible for JOJO to arrive at the destination in time, output "yareyaredawa" (without quote), else output "Whitesnake!" (without quote).

样例输入

2 2

1 2 2 14

1 2 5

2 1 4

样例输出

yareyaredawa

#include <bits/stdc++.h>
using namespace std;
const int N=1005;
const int M=100005;
inline int read()
{int x=0,f=1;char ch=getchar();while (ch<'0' || ch>'9'){if (ch=='-') f=-1;ch=getchar();}while (ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;
}
int n,m,sta,en,kth,T,Ecnt,Eoppcnt;
int dist[N];
int times[N];
bool vis[N];
struct Edge{int to,next,val;}E[M],Eopp[M];//Eopp means Eopposite
int last[N],last_opp[N];
struct A_Star_node{int p,g,h;bool operator < (A_Star_node x)const{return x.g+x.h<g+h;}
};//means point  and a_Star:f(x)=g(x)+h(x);
priority_queue<A_Star_node>Q;
inline void add(int u,int v,int w)
{Ecnt++;E[Ecnt].next=last[u];E[Ecnt].to=v;E[Ecnt].val=w;last[u]=Ecnt;
}
inline void add_opposite(int u,int v,int w)
{Eoppcnt++;Eopp[Eoppcnt].next=last_opp[u];Eopp[Eoppcnt].to=v;Eopp[Eoppcnt].val=w;last_opp[u]=Eoppcnt;
}
void dij(int s,int e)
{memset(vis,0,sizeof(vis));memset(dist,127,sizeof(dist));int mi;dist[e]=0;for (int i=1;i<=n;i++){mi=0;for (int j=1;j<=n;j++)if (!vis[j] && dist[mi]>dist[j])    mi=j;vis[mi]=1;for (int x=last_opp[mi];x;x=Eopp[x].next)dist[Eopp[x].to]=min(dist[Eopp[x].to],dist[mi]+Eopp[x].val);}
}
int A_Star(int s,int e)
{A_Star_node t1,tmp;memset(times,0,sizeof(times));while (!Q.empty()) Q.pop();t1.g=t1.h=0; t1.p=s;Q.push(t1);while (!Q.empty()){t1=Q.top();    Q.pop();times[t1.p]++;if (times[t1.p]<=kth && t1.h>T) return -1;//K短路之前的路已经比要求的时间长了,一定是不合法的方案if (times[t1.p]==kth && t1.p==e) return t1.h;if (times[t1.p]>kth) continue;for (int i=last[t1.p];i;i=E[i].next){tmp.p=E[i].to;tmp.g=dist[E[i].to];tmp.h=E[i].val+t1.h;Q.push(tmp);}}return -1;
}
int main()
{while (scanf("%d%d",&n,&m)!=EOF){sta=read(); en=read(); kth=read(); T=read();int x,y,z;memset(last,0,sizeof(last));memset(last_opp,0,sizeof(last_opp));Ecnt=0;Eoppcnt=0;while (m--){x=read(); y=read(); z=read();add(x,y,z);add_opposite(y,x,z);}dij(sta,en);if (sta==en) kth++;int ans=A_Star(sta,en);if (ans==-1||ans>T) puts("Whitesnake!");else puts("yareyaredawa");}return 0;
}
View Code

 

转载于:https://www.cnblogs.com/tetew/p/9610212.html

这篇关于ACM-ICPC2018 沈阳赛区网络预赛-D-Made In Heaven8的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/368333

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解