增强学习(二)----- 马尔可夫决策过程MDP

2023-11-08 00:32

本文主要是介绍增强学习(二)----- 马尔可夫决策过程MDP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 马尔可夫模型的几类子模型

大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关。

马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。还是举下棋的例子,当我们在某个局面(状态s)走了一步(动作a),这时对手的选择(导致下个状态s’)我们是不能确定的,但是他的选择只和s和a有关,而不用考虑更早之前的状态和动作,即s’是根据s和a随机生成的。

我们用一个二维表格表示一下,各种马尔可夫子模型的关系就很清楚了:

  不考虑动作 考虑动作
状态完全可见 马尔科夫链(MC) 马尔可夫决策过程(MDP)
状态不完全可见 隐马尔可夫模型(HMM) 不完全可观察马尔可夫决策过程(POMDP)

2. 马尔可夫决策过程

一个马尔可夫决策过程由一个四元组构成M = (S, A, Psa, R) 

MDP 的动态过程如下:某个智能体(agent)的初始状态为s0,然后从 A 中挑选一个动作a0执行,执行后,agent 按Psa概率随机转移到了下一个s1状态,s1∈ Ps0a0。然后再执行一个动作a1,就转移到了s2,接下来再执行a2…,我们可以用下面的图表示状态转移的过程。

如果回报r是根据状态s和动作a得到的,则MDP还可以表示成下图:

3. 值函数(value function)

上篇我们提到增强学习学到的是一个从环境状态到动作的映射(即行为策略),记为策略π: S→A。而增强学习往往又具有延迟回报的特点: 如果在第n步输掉了棋,那么只有状态sn和动作an获得了立即回报r(sn,an)=-1,前面的所有状态立即回报均为0。所以对于之前的任意状态s和动作a,立即回报函数r(s,a)无法说明策略的好坏。因而需要定义值函数(value function,又叫效用函数)来表明当前状态下策略π的长期影响。

用Vπ(s)表示策略π下,状态s的值函数。ri表示未来第i步的立即回报,常见的值函数有以下三种:

a)

b)

c)

其中:

a)是采用策略π的情况下未来有限h步的期望立即回报总和;

b)是采用策略π的情况下期望的平均回报;

c)是值函数最常见的形式,式中γ∈[0,1]称为折合因子,表明了未来的回报相对于当前回报的重要程度。特别的,γ=0时,相当于只考虑立即不考虑长期回报,γ=1时,将长期回报和立即回报看得同等重要。接下来我们只讨论第三种形式,

 

现在将值函数的第三种形式展开,其中ri表示未来第i步回报,s'表示下一步状态,则有:

给定策略π和初始状态s,则动作a=π(s),下个时刻将以概率p(s'|s,a)转向下个状态s',那么上式的期望可以拆开,可以重写为:

上面提到的值函数称为状态值函数(state value function),需要注意的是,在Vπ(s)中,π和初始状态s是我们给定的,而初始动作a是由策略π和状态s决定的,即a=π(s)

定义动作值函数(action value functionQ函数)如下:

给定当前状态s和当前动作a,在未来遵循策略π,那么系统将以概率p(s'|s,a)转向下个状态s',上式可以重写为:

在Qπ(s,a)中,不仅策略π和初始状态s是我们给定的,当前的动作a也是我们给定的,这是Qπ(s,a)和Vπ(a)的主要区别。

知道值函数的概念后,一个MDP的最优策略可以由下式表示:

即我们寻找的是在任意初始条件s下,能够最大化值函数的策略π*。

4. 值函数与Q函数计算的例子

上面的概念可能描述得不够清晰,接下来我们实际计算一下,如图所示是一个格子世界,我们假设agent从左下角的start点出发,右上角为目标位置,称为吸收状态(Absorbing state),对于进入吸收态的动作,我们给予立即回报100,对其他动作则给予0回报,折合因子γ的值我们选择0.9。

为了方便描述,记第i行,第j列的状态为sij, 在每个状态,有四种上下左右四种可选的动作,分别记为au,ad,al,ar。(up,down,left,right首字母),并认为状态按动作a选择的方向转移的概率为1。

1.由于状态转移概率是1,每组(s,a)对应了唯一的s'。回报函数r(s'|s,a)可以简记为r(s,a)

如下所示,每个格子代表一个状态s,箭头则代表动作a,旁边的数字代表立即回报,可以看到只有进入目标位置的动作获得了回报100,其他动作都获得了0回报。 即r(s12,ar) = r(s23,au) =100。

 

2. 一个策略π如图所示:

 

3. 值函数Vπ(s)如下所示

根据Vπ的表达式,立即回报,和策略π,有

Vπ(s12) = r(s12,ar) = r(s13|s12,ar) = 100

 Vπ(s11)= r(s11,ar)+γ*Vπ(s12) = 0+0.9*100 = 90

Vπ(s23) = r(s23,au) = 100

 Vπ(s22)= r(s22,ar)+γ*Vπ(s23) = 90

 Vπ(s21)= r(s21,ar)+γ*Vπ(s22) = 81

4. Q(s,a)值如下所示

有了策略π和立即回报函数r(s,a), Qπ(s,a)如何得到的呢?

对s11计算Q函数(用到了上面Vπ的结果)如下:

Qπ(s11,ar)=r(s11,ar)+ γ *Vπ(s12)  =0+0.9*100 = 90

Qπ(s11,ad)=r(s11,ad)+ γ *Vπ(s21)  = 72

 

至此我们了解了马尔可夫决策过程的基本概念,知道了增强学习的目标(获得任意初始条件下,使Vπ值最大的策略π*),下一篇开始介绍求解最优策略的方法。

PS:发现写东西还是蛮辛苦的,希望对大家有帮助。另外自己也比较菜,没写对的地方欢迎指出~~

 

[注]采用折合因子作为值函数的MDP也可以定义为五元组M=(S, A, P, γ, R)。也有的书上把值函数作为一个因子定义五元组。还有定义为三元组的,不过MDP的基本组成元素是不变的。

参考资料:

[1] R.Sutton et al. Reinforcement learning: An introduction , 1998

[2] T.Mitchell. 《机器学习》,2003

[3] 金卓军,逆向增强学习和示教学习算法研究及其在智能机器人中的应用[D],2011

[4] Oliver Sigaud et al,Markov Decision Process in Artificial Intelligence[M], 2010


文章来源:http://blog.csdn.net/zz_1215/article/details/44138823

这篇关于增强学习(二)----- 马尔可夫决策过程MDP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366982

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于