深入了解Redission分布式锁原理以及可重入锁的原理

2023-11-07 23:20

本文主要是介绍深入了解Redission分布式锁原理以及可重入锁的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redisson是一个基于Redis的Java框架,用于实现各种分布式功能,包括分布式锁。Redisson提供了多种分布式锁的实现,其中包括可重入锁、公平锁、联锁(多个锁同时锁定或释放)、红锁(多个独立Redis节点的分布式锁),以及读写锁等。


基于setnx实现的分布式锁存在以下四个问题

Redisson入门使用教程 

Redisson客户端配置:首先,您需要配置Redisson客户端以连接到Redis服务器。通常,这涉及创建一个Config对象,并使用useSingleServer()或其他方法指定Redis服务器的连接信息。示例代码中的配置是连接到本地Redis服务器的示例。(对了这里不要忘记引入redisson依赖)

Config config = new Config();
config.useSingleServer().setAddress("redis://localhost:6379").setPassword("your word");
return Redisson.create(config)

 Redisson的使用

public class RedissonLockExample {public static void main(String[] args) {// 配置RedissonConfig config = new Config();config.useSingleServer().setAddress("redis://localhost:6379");// 创建Redisson客户端RedissonClient redisson = Redisson.create(config);// 获取锁RLock lock = redisson.getLock("myLock");try {// 尝试加锁,最多等待10秒boolean locked = lock.tryLock(10, 30, java.util.concurrent.TimeUnit.SECONDS);if (locked) {// 锁定成功,执行需要加锁的代码System.out.println("获取锁成功,这里来写需要加锁的代码");Thread.sleep(5000); // 模拟锁定后的操作} else {// 锁定失败System.out.println("获取锁失败");}} catch (InterruptedException e) {e.printStackTrace();} finally {// 释放锁lock.unlock();System.out.println("释放锁");}// 关闭Redisson客户端redisson.shutdown();}

 深入讲解Redisson可重入锁的工作原理

 重入锁原理 

      重入锁(Reentrant Lock)是一种高级的同步工具,它允许同一个线程多次获取同一把锁,而不会发生死锁。这意味着一个线程在持有锁的情况下可以多次进入锁保护的代码块,而不会被自己阻塞

  1. 锁计数器:重入锁内部维护一个锁计数器,用于跟踪锁的持有次数。初始时,锁计数器为0,表示没有线程持有该锁。

  2. 加锁操作:当一个线程首次请求加锁时,锁计数器会增加,同时记录下持有锁的线程。此时,线程获得了锁,并且可以执行锁保护的代码块。

  3. 重入:如果同一个线程再次请求加锁(重复加锁),锁计数器会继续增加,表示锁被持有多次。线程在退出锁保护的代码块之前,可以多次加锁和解锁,而锁计数器会相应地增加和减少。

  4. 解锁操作:每次线程解锁时,锁计数器减少。只有当锁计数器减少为0时,锁才会被完全释放,其他线程才有机会获得锁。

作用:

  1. 避免死锁:重入锁允许同一线程多次获取锁,因此不会因为线程自己持有的锁而导致死锁。这在复杂的多线程场景中非常有用,因为线程可能需要在执行一些递归函数或者多层嵌套的方法时多次获取锁。

  2. 精细控制锁的释放:与传统的synchronized关键字相比,重入锁允许更灵活地控制锁的释放。线程可以在锁保护的代码块内多次获取和释放锁,而不必将整个代码块包裹在同一个synchronized块中。

我们来看一下trylock的底层逻辑:

 通过redis的hash结构来实现锁的重入,如果第一次获取锁就创建,并把value设置为1,再次有线程想要获取锁就再次增加value的值,释放锁时每当一个线程释放时value就减一。直到为0彻底释放完成

调用了tryLockAsync方法并传入了线程id的参数

 由于初始时未填写过期时间等待时间等信息,默认为-1,进而再次调用tryAcquireOnceAsync方法

 <T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {this.internalLockLeaseTime = unit.toMillis(leaseTime);return this.evalWriteAsync(this.getName(), LongCodec.INSTANCE, command, 
"if (redis.call('exists', KEYS[1]) == 0) then 
redis.call('hincrby', KEYS[1], ARGV[2], 1); 
redis.call('pexpire', KEYS[1], ARGV[1]); 
return nil; end; 
if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) 
then redis.call('hincrby', KEYS[1], ARGV[2], 1); 
redis.call('pexpire', KEYS[1], ARGV[1]); 
return nil; end; 
return redis.call('pttl', KEYS[1]);",Collections.singletonList(this.getName()), this.internalLockLeaseTime, this.getLockName(threadId));}

可见为了保证获取锁的原子性也即不让其他线程在这个线程获取锁的过程中“插队”执行需要将获取锁的代码写入一个Lua脚本当中。

当==0时表示之前未有线程获取锁创建并赋值。当==1时表示存在,为了实现重入就在value上加一,并设置过期时间。注意 这里返回nil代表成功,失败返回对应的时间毫秒值pttl

之后会释放锁

 protected RFuture<Boolean> unlockInnerAsync(long threadId) {return this.evalWriteAsync(this.getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN, "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then return nil;end;local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); if (counter > 0) then redis.call('pexpire', KEYS[1], ARGV[2]); return 0;else redis.call('del', KEYS[1]); redis.call('publish', KEYS[2], ARGV[1]); return 1; end; return nil;",Arrays.asList(this.getName(), this.getChannelName()), LockPubSub.UNLOCK_MESSAGE, this.internalLockLeaseTime, this.getLockName(threadId));}

每次释放锁都会对数量减一直至0,并且发布释放锁的通知

重试获取锁机制讲解

trylock源码

 public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {long time = unit.toMillis(waitTime);long current = System.currentTimeMillis();long threadId = Thread.currentThread().getId();Long ttl = this.tryAcquire(waitTime, leaseTime, unit, threadId);if (ttl == null) {return true;} else {time -= System.currentTimeMillis() - current;if (time <= 0L) {this.acquireFailed(waitTime, unit, threadId);return false;} else {current = System.currentTimeMillis();RFuture<RedissonLockEntry> subscribeFuture = this.subscribe(threadId);if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) {if (!subscribeFuture.cancel(false)) {subscribeFuture.onComplete((res, e) -> {if (e == null) {this.unsubscribe(subscribeFuture, threadId);}});}this.acquireFailed(waitTime, unit, threadId);return false;} else {try {time -= System.currentTimeMillis() - current;if (time <= 0L) {this.acquireFailed(waitTime, unit, threadId);boolean var20 = false;return var20;} else {boolean var16;do {long currentTime = System.currentTimeMillis();ttl = this.tryAcquire(waitTime, leaseTime, unit, threadId);if (ttl == null) {var16 = true;return var16;}time -= System.currentTimeMillis() - currentTime;if (time <= 0L) {this.acquireFailed(waitTime, unit, threadId);var16 = false;return var16;}currentTime = System.currentTimeMillis();if (ttl >= 0L && ttl < time) {((RedissonLockEntry)subscribeFuture.getNow()).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);} else {((RedissonLockEntry)subscribeFuture.getNow()).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);}time -= System.currentTimeMillis() - currentTime;} while(time > 0L);this.acquireFailed(waitTime, unit, threadId);var16 = false;return var16;}} finally {this.unsubscribe(subscribeFuture, threadId);}}}}}

可见这里默认ttl也是为-1,注意tryAcquire方法,返回值为ttl,ttl为null即为获得锁成功

这里由于默认存活时间为-1,所以下面参数默认存活时间为

this.commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

(watchdog看门狗)也就是30s。

如果ttl为null那么返回true代表获取成功

否则用最大等待时间time减去上面的系统时间算出这段代码的耗时,如果为负数说明超过最大等待时长,返回false,如果time大于0,不直接判断,因为此时别的线程获取锁正在执行,假设立马执行只是会浪费cpu资源,所以这里用了subscribe(threadId)方法来订阅锁释放的信息(上面的unlock代码释放锁会发布信息),然后采用计数器进行等待,等待时长为time,假设没等到,返回false,那么使用unsubscribe()方法结束订阅,返回false。

如果等到别的线程释放锁,就再次判断上面代码是否超时,超时返回false,否则再次带哦用tryAcquire方法

如果ttl小于等待时间time,那么就尝试ttl时间,否则就尝试获取锁在time时间内,知道time结束,这就时重试获取锁机制了。


Redisson分布式锁的原理

获取锁

也就是说如果不设置存活时间,那么会利用看门狗执行任务刷新等待

释放锁 

这篇关于深入了解Redission分布式锁原理以及可重入锁的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366737

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J