电磁波时域有限差分方法(FDTD)-C语言-FDTD和激励源和MUR边界

2023-11-07 21:30

本文主要是介绍电磁波时域有限差分方法(FDTD)-C语言-FDTD和激励源和MUR边界,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:

葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安电子科技大学出版社, 2011.

Schneider J B. Understanding the Finite-Difference Time-Domain Method[J]. 2013.


最近要用FDTD做仿真,所以找了以上两本书,FDTD确实是有点难的。

想了想流程:

1:FDTD

2:激励源

3:吸收边界

4:散射


现在完成了FDTD和激励源,的TM部分,虽然都是抄书的,但对于一个不懂电磁波电磁场,数学极差的我来说,光是看懂代码就已经竭尽全力了。

何况还遇到了C语言宏定义的坑。

然后做了一部分的MUR吸收,效果不咋的,不知道就是这样的还是我代码有问题。


上代码,基本就是抄书的,但是简洁了一点。。

就不先做注释了,等到最后全部写完再做注释。

// Boundary.cpp: 定义控制台应用程序的入口点。
//#include "stdafx.h"
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define _CRT_SECURE_NO_WARNINGS#define ALLOC_2D(PNTR, NUMX, NUMY, TYPE)					\PNTR = (TYPE *)calloc((NUMX) * (NUMY), sizeof(TYPE));	\if (!PNTR) {												\perror("ALLOC_2D");									\fprintf(stderr, "Allocation failed for" #PNTR ". Terminating.\n");	\exit(-1);											\}
#define SizeX g->sizeX
#define SizeY g->sizeY
#define CDTDS g->cdtds
#define Time g->time
#define MaxTime g->maxTime#define Ez(M, N) g->ez[M * SizeY + N]
#define CA(M, N) g->ceze[M * SizeY + N]
#define CB(M, N) g->cezh[M * SizeY + N]#define Hx(M, N) g->hx[M * (SizeY) + N]
#define CP(M, N) g->chxh[M * (SizeY) + N]
#define CQ(M, N) g->chxe[M * (SizeY) + N]#define Hy(M, N) g->hy[M * SizeY + N]
//#define Chyh(M, N) g->chyh[M * SizeY + N]
//#define Chye(M, N) g->chye[M * SizeY + N]struct Grid {double *hx, *chxh, *chxe;double *hy, *chyh, *chye;double *ez, *ceze, *cezh;int sizeX, sizeY;int time, maxTime;int type;double cdtds;	//库朗数
};
typedef struct Grid Grid;void gridInit(Grid *g);
double driveSource(Grid *g, double time, double locX, double locY);
void writeFile(Grid *g);
void updateE(Grid *g);
void updateH(Grid *g);
void updateBoundary(Grid *g);
void EHInit(Grid *g);float c = 3e8;
float PI = 3.1415926535;
float MU0 = PI * 4e-7;
float EPS0 = (1 / (36 * PI)) * 1e-9;
float SIGMA0 = 0;
float SIGMAm0 = 0;
float DELTA = 5e-3;
float DELTAT = DELTA / (sqrt(2.0) * c);int main()
{int m, n;double source;Grid *g;ALLOC_2D(g, 100, 100, Grid);EHInit(g);gridInit(g);for (Time = 0; Time < 150; Time++){updateH(g);updateBoundary(g);updateE(g);source = driveSource(g, Time, 0, 0);Ez(SizeX / 2, SizeY / 2) = source;}writeFile(g);getchar();return 0;
}
void EHInit(Grid *g)
{int n, m;for (m = 0; m < SizeX; m++){for (n = 0; n < SizeY; n++){Hy(m, n) = 0;Hx(m, n) = 0;Ez(m, n) = 0;}}
}void gridInit(Grid *g)
{int m, n;SizeX = 100;SizeY = 100;MaxTime = 300;CDTDS = 1.0 / sqrt(2.0);ALLOC_2D(g->hx, SizeX, SizeY, double);ALLOC_2D(g->chxh, SizeX, SizeY, double);ALLOC_2D(g->chxe, SizeX, SizeY, double);ALLOC_2D(g->hy, SizeX, SizeY, double);ALLOC_2D(g->chyh, SizeX, SizeY, double);ALLOC_2D(g->chye, SizeX, SizeY, double);ALLOC_2D(g->ez, SizeX, SizeY, double);ALLOC_2D(g->ceze, SizeX, SizeY, double);ALLOC_2D(g->cezh, SizeX, SizeY, double);for (m = 0; m < SizeX; m++){for (n = 0; n < SizeY; n++){//Ez(m, n) = 0;CA(m, n) = (1 - 0.5 * SIGMA0 * DELTAT / MU0) / (1 + 0.5 * SIGMA0 * DELTAT / MU0);CB(m, n) = (DELTAT / EPS0) / (1 + (SIGMA0 * DELTAT / (2 * EPS0)));}}for (m = 0; m < SizeX; m++){for (n = 0; n < SizeY; n++){//Hx(m, n) = 0;CP(m, n) = (1 - (SIGMAm0 * DELTAT) / (2 * MU0)) / (1 + (SIGMAm0 * DELTAT) / (2 * MU0));CQ(m, n) = (DELTAT / MU0) / (1 + (SIGMAm0 * DELTAT / (2 * MU0)));}}printf("The CA is :%f\n", CA(50, 50));printf("The CB is :%f\n", CB(50, 50));printf("The CP is :%f\n", CP(50, 50));printf("The CQ is :%f\n", CQ(50, 50));
}double driveSource(Grid *g, double time, double locX, double locY)
{double result;double ricker_result;double ppw = 20;double cdtds = CDTDS;double w0 = 1000000000.0; //天线的中心频率double arg;result = time * time * sin(2 * 3.1415 * w0 * time) * exp(-0.93 * w0 * time);arg = 3.14159 * ((cdtds * time - 0.0) / ppw - 1.0);arg = arg * arg;ricker_result = (1.0 - 2.0 * arg) * exp(-arg);return ricker_result;
}void updateE(Grid *g)
{int m, n;for (m = 1; m < (SizeX - 1); m++){for (n = 1; n < (SizeY - 1); n++){Ez(m, n) = CA(m, n) * Ez(m, n) + CB(m, n) * ((Hy(m, n) - Hy((m - 1), n)) / DELTA - (Hx(m, n) - Hx(m, (n - 1))) / DELTA);}}
}void updateH(Grid *g)
{int m, n;for (m = 0; m < (SizeX); m++){for (n = 0; n < (SizeY - 1); n++){Hx(m, n) = CP(m, n) * Hx(m, n) - CQ(m, n) * (Ez(m, (n + 1)) - Ez(m, n)) / DELTA;}}for (m = 0; m < (SizeX - 1); m++){for (n = 0; n < (SizeY); n++){Hy(m, n) = CP(m, n) * Hy(m, n) + CQ(m, n) * (Ez((m + 1), n) - Ez(m, n)) / DELTA;}}
}void updateBoundary(Grid *g)
{int m, n;int firstX = 0, firstY = 0, lastX = 99, lastY = 99;Grid *g1;ALLOC_2D(g1, 100, 100, Grid);memcpy(g1, g, sizeof(Grid));gridInit(g1);//updateH(g1);updateE(g1);//修正Hy左边界m = firstX;for (n = 1; n < lastY; n++){Ez(m, n) = Ez((m + 1), n) + ((c * DELTAT - DELTA) / (c * DELTAT + DELTA)) * (g1->ez[(m+1) * SizeY + n] - Ez(m, n))//-((c * c * DELTAT * MU0) / (2 * (c * DELTAT + DELTA))) * (g1->hx[m*SizeY+(n+1)] - g1->hx[m*SizeY + (n - 1)] + g1->hx[(m+1)*SizeY + (n + 1)] - g1->hx[(m + 1)*SizeY + (n - 1)]);-((c * c * DELTAT * MU0) / (2 * (c * DELTAT + DELTA))) * (Hx(m, (n + 1)) - Hx(m, (n - 1)) + Hx((m + 1), (n + 1)) - Hx((m + 1), (n - 1)));}//修正Hy右边界m = lastX;for (n = 1; n < lastY; n++){Ez(m, n) = Ez((m - 1), n) + ((c * DELTAT - DELTA) / (c * DELTAT + DELTA)) * (g1->ez[(m - 1) * SizeY + n] - Ez(m, n))- ((c * c * DELTAT * MU0) / (2 * (c * DELTAT + DELTA))) * (Hx(m, (n + 1)) - Hx(m, (n - 1)) + Hx((m - 1), (n + 1)) - Hx((m - 1), (n - 1)));}/*//修正Hx下边界//修正Hx上边界*/
}void writeFile(Grid *g)
{int m, n;FILE *f = fopen("C:\\Users\\Administrator\\Desktop\\data.txt", "a");if (f == NULL) printf("open file error");for (n = SizeY - 1; n >= 0; n--){for (m = 0; m < SizeX; m++){fprintf(f, "%f,", Ez(m, n));}fprintf(f, "\n");}fclose(f);
}


然后用matlab对生成的东西成像:

imshow(data50,[]);

时间步为50:


时间步为100:


时间步为150:


会发现150的有反射波了,这是因为没加上吸收边界。


如果加上MUR吸收边界是这样的:

可以看到反射波确实有变好一点,但是边框上出现了黑边,还得对边上的Ez进行修正才行

这篇关于电磁波时域有限差分方法(FDTD)-C语言-FDTD和激励源和MUR边界的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366381

相关文章

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函