相机姿态轨迹最小二乘多项式平滑优化(防抖动)

2023-11-07 21:10

本文主要是介绍相机姿态轨迹最小二乘多项式平滑优化(防抖动),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇讲了利用随即一致性来减少错误匹配的情况,这一篇讲一下使用最小二乘多项式平滑方法来减少姿态的抖动问题。因为我们的设备是手持单目,相机在移动的过程中,会产生细微的抖动。虽然EKF或者G2O(通用图优化)会帮我们最小化错误,但是当我们得到正确的最接近真实的姿态后,我们会发现这些姿态是存在细微抖动的。下图为未平滑的相机姿态(Matlab):

我们看到有大量的抖动在里面。体现在图像上则是AR物体会有小幅度的波动。这个波动其实很小,如果AR物体比较小的话,这个波动是不明显的(肉眼几乎察觉不到)。但是当我们拉远距离,呈现很大的AR物体时(如车展上的汽车),这个波动肉眼还是能察觉到。另外现在的VR/AR系统里,减小眩晕感是很重要的,所以有必要使呈现出的虚拟物体更加的稳定。因为AR系统是实时的,而复杂的滤波或者平滑方法会消耗更多的时间,所以我们采用基础的最小二乘法来消除抖动。这种方法参数少,计算量小,速度快,平滑效果不错。完整的名字是最小二乘移动窗口多项式平滑,我们用周围多个带有不同权重的点来表示其中的一个点,合理的选择平滑窗口的大小和多项式的次方数,对于消除抖动的效果和时间消耗极为重要。对于平滑后的数据与原始数据之间的误差,我们做了相应的数据补偿。

首先来看看最小二乘多项式平滑中最重要的两个参数:平滑窗口大小2m+1,多项式次数n。如下图所示:

我们先来计算一下m=2(移动窗口大小为5),n=2情况下的权重(系数)矩阵:

方程组(14)可以被表示成矩阵形式(15),然后利用通用解法解线性方程组。

得到b之后,带入到(14)里,就得到了每个点如何被周围2m+1个点表示,同时也得到了权重矩阵:

以下是不同平滑窗口大小和多项式次方的权重矩阵,用到系统中时只要选好参数就可以直接使用(m=3 n=1中第7行第一位是-5,图片中有误):

对于每一个新添加到平滑窗口里的姿态,使用前2m+1个姿态平滑,返回平滑后的数据,右移窗口(就是删第一个姿态,添加新姿态到最后)(第7行第一位是-5,图片中有误):

做了一些实验,对比分析实验结果后发现平滑窗口大小为7,多项式次数为1时,平滑效果最佳。大约平滑了20%:

平滑后的数据与原数据之间的误差是不可避免的,但还是有一些地方的误差是不必要的,比如一些本身平滑的轨迹,因为受到前后不平滑姿态的影响导致一定的不必要误差。遇到这种情况,我们便减少平滑后数据与原始数据之间的距离。比如连续k个姿态,波动角度小于一定值,我们便做这种处理:

经过一定的实验,我们发现连续5个姿态波动cos大于0.8(角度小于arccos(0.8))时减少距离,效果最好:

最终整个平滑过程减少了姿态轨迹的波动,提高了约20%的平滑度,误差约0.01*50=5像素(图中一个unit为50pixel),耗时0.1毫秒。

这篇关于相机姿态轨迹最小二乘多项式平滑优化(防抖动)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/366298

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S