学习笔记|SPSS|描述变量|按照3倍标准差剔除异常值|标准化值另存为变量|剔除个案|Zscore|箱图|Zscore取值范围

本文主要是介绍学习笔记|SPSS|描述变量|按照3倍标准差剔除异常值|标准化值另存为变量|剔除个案|Zscore|箱图|Zscore取值范围,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 学习目的
  • 软件版本
  • 原始文档
  • 概述
  • 服从正态分布-按照3倍标准差剔除异常值
    • 读数据
    • 数据概览
      • 描述变量
    • 正态性检验
    • 异常值检验及剔除
  • 非正态分布-根据Zscore取值范围确定
    • 基础数据
    • 数据概览
      • 正态性检验
      • Tips:箱图圆圈的含义
    • 异常值检验及剔除
      • 描述变量,并将标准化值另存为变量:
      • 异常值筛选
  • Tips:Zscore取值范围
  • Tips:什么是Z-score?有哪些使用场景?

学习目的

SPSS按照3倍标准差剔除异常值

软件版本

IBM SPSS Statistics 26。

原始文档

spss按照3倍标准差剔除异常值
《小白爱上SPSS》课程第3讲数据

概述

数据需要服从正态分布。在3∂原则下,异常值如超过3倍标准差,那么可以将其视为异常值。正负3∂的概率是99.7%,那么距离平均值3∂之外的值出现的概率为P(|x-u| 3∂) = 0.003,属于极个别的小概率事件。
如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。即,使用Z-分数(Z-score)进行判断,计算每个数据的Z-分数。样本中每个数据 - 样本平均数,除以样本标准差,即可以计算每个数据的Z-分数。Z-score的值应该为【-3,+3】,超过该值的存在为异常值的可能,需要进一步判断。

服从正态分布-按照3倍标准差剔除异常值

三倍标准差法剔除异常值是一种经典的数据处理方法,指根据样本量和样本方差确定统计准则,将极端异常值(离群点)剔除,它是根据样本量和样本方差体现出来的分布统计学中的“三倍标准差”原则来处理数据异常值的方法。
三倍标准差剔除异常值涉及两个概念;根据总体样本方差的大小,让算出每个样本的“允许范围”;.将超出“允许范围”的异常值剔除出去。
其具体步骤是: 1、计算样本的标准差;2、确定样本的允许范围;3、如果有极端异常值,就剔除出来。
总体样本标准差的大小和离群点的定义有关,一般将样本标准差的三倍作为样本允许偏差范围,即若极端值(离群点)超出三倍标准差,则该数据被认为是异常值,可以被剔除。
异常值指的是在观测样本中,偏离于绝大部分样本分布的值。在连续型变量中,如果一个值与该变量的均值超过2倍标准差,我们一般就可以将之视为异常值。
由于样本中的离群点影响样本的方差,因此用三倍标准差的方法能有效地将极端值剔除,使样本方差更准确。
三倍标准差剔除异常值的优点是简单、快捷,可被广泛应用于分析数据,但也有不足之处。如果总体数据分布不同,样本标准差容易受到偏差;如果总体数据分布是非正态分布,由于样本数据分布更集中,因此很可能会误判离群点,这种情况下,可以考虑调整标准差的倍数,要求更大倍数以保证准确率。

读数据

GET FILE='E:\E盘备份\recent\小白爱上SPSS\小白数据\第三讲 正态分布.sav'. 

在这里插入图片描述

数据概览

描述变量

在这里插入图片描述
选择连续性变量“身高”作为描述变量,选择输出值类型:
在这里插入图片描述
命令行:

DESCRIPTIVES VARIABLES=身高 /SAVE /STATISTICS=MEAN STDDEV MIN MAX	/*平均值,标准化值,最小值,最大值*/.

在这里插入图片描述

正态性检验

命令行:

EXAMINE VARIABLES=身高/PLOT HISTOGRAM NPPLOT /*若无此行,则不输出正态性检验表*//COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.

在这里插入图片描述
样本数量25个小于40个,使用夏皮洛-威尔克检验。经S-W检验,体重数据的P=0.998(P>0.05,接受原假设),没有统计学意义,可认为该组数据符合正态分布。
结合直方图:
命令行:

GRAPH 			/*绘图*//HISTOGRAM(NORMAL)=身高	/*直方图(正态)*/.

在这里插入图片描述
呈明显的倒钟型,该组数据符合正态分布。
身高的正态Q-Q图:
在这里插入图片描述
观察Q-Q图上的点能否分布在一条直线上,分布在一条直线上则说明近似或服从正态分布。
本例中,身高绝大多数的点能分布在一条直线上,直线趋势明显,可认为该连续数据服从正态分布。

异常值检验及剔除

数据-选择个案:
在这里插入图片描述
进入后,选择身高-选择如果条件满足:
筛选条件:身高 <= (149.68+311.3274) & 身高 >= (149.68-311.3274)
在这里插入图片描述
有效数据范围:
在这里插入图片描述
命令行:

USE ALL. 
COMPUTE filter_$=(身高 <= (149.68+3*11.3274)  &  身高 >= (149.68-3*11.3274)). 
VARIABLE LABELS filter_$ '身高 <= (149.68+3*11.3274)  &  身高 >= (149.68-3*11.3274) (FILTER)'. 
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMATS filter_$ (f1.0). 
FILTER BY filter_$. 
EXECUTE.

数据均在平均值+/-33倍标准差范围内,无需剔除:
在这里插入图片描述

非正态分布-根据Zscore取值范围确定

基础数据

引自原文。
在这里插入图片描述

数据概览

正态性检验

命令行:

EXAMINE VARIABLES=height/PLOT BOXPLOT HISTOGRAM NPPLOT /*若无此行,则不输出正态性检验表,增加箱图输出:BOXPLOT*//COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.

在这里插入图片描述
样本数量6个,小于40个,使用夏皮洛-威尔克检验。经S-W检验,体重数据的P<0.001(P<0.05,不接受原假设),有统计学意义,该组数据不符合正态分布。
在这里插入图片描述
结合箱图,可以明显看到,id=4的数据明显偏离。

Tips:箱图圆圈的含义

箱线图中的“o"表示可疑的异常值﹐此处异常值的确定采用的是"五数概括法",即:变量值超过第75百分位点和25百分位点上变量值之差的1.5倍(箱体上方)或变量值小于第75百分位点和25百分位点上变量值之差的1.5倍(箱体下方)的点对应的值。

异常值检验及剔除

描述变量,并将标准化值另存为变量:

命令行:

DESCRIPTIVES VARIABLES=身高 /SAVE /STATISTICS=MEAN STDDEV MIN MAX	/*平均值,标准化值,最小值,最大值*/.

在这里插入图片描述

异常值筛选

说明:大多数指标均要求正常Z值区间为[-3,3]。Z值落在区间[-3,3],我们所测值在总群体的发生概率为99.7%,超出这个区间的概率为0.3%。而本例中原作者采用的Z值区间标准较小小,如[-1.5,1.5]之间。
数据-选择个案:
进入后,选择Zscore-选择如果条件满足
在这里插入图片描述
点击“如果”,输入条件,添加条件公式,使用变量名Z身高生成公式:
Zheight * 2 <= 3 & Zheight * 2 >=( -3 )
在这里插入图片描述
点击继续,确定,形成筛选列。
在这里插入图片描述
最终,下划线剔除id=4样本,filter变量Selected表示选中,Not Selected表示剔除。
命令行:

USE ALL. 
COMPUTE filter_$=(Zheight * 2 <= 3  & Zheight * 2 >=( -3 )). 
VARIABLE LABELS filter_$ 'Zheight * 2 <= 3  & Zheight * 2 >=( -3 ) (FILTER)'. 
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMATS filter_$ (f1.0). 
FILTER BY filter_$. 
EXECUTE.

Tips:Zscore取值范围

引自百度文库:Zscore取值范围。
Z分数是一种常用的统计方法,用于度量一个数据点在数据集中的位置。它的取值范围为-3到+3之间,表示数据点与平均值的偏离程度和相对于标准差的偏离程度。Z分数的取值范围可以帮助我们解释和理解数据,判断异常值,以及进行比较和分析。无论在统计学还是其他领域,Z分数都具有重要的应用价值。
它衡量的是某个数据点与平均值的偏离程度,以及相对于标准差的偏离程度。Z分数可以告诉我们一个数据点相对于其他数据点的相对位置,从而帮助我们进行比较和分析。
Z分数的范围在理论上是无限的,但在实际应用中,我们通常将其限制在一定的取值范围内,以便更好地解释和理解数据。一般来说,Z分数的取值范围为-3到+3之间。超出这个范围的Z分数很少出现,因为它们表示的是极端的情况,即数据点与平均值的偏离程度非常大。
当Z分数为负数时,表示数据点低于平均值。例如,一个工分数为-2的数据点表示该数据点低于平均值两个标准差。当Z分数为正数时,表示数据点高于平均值。例如,一个7分数为+2的数据点表示该数据点高于平均值两个标准差。
Z分数的取值范围为-3到+3之间的原因是,根据正态分布的性质,约68%的数据点的Z分数在-1到+1之间,约95%的数据点的Z分数在-2到+2之间,约99.7%的数据点的Z分数在-3到+3之间。这个规律被称为“68-95-99.7法则”,它告诉我们在正态分布中,数据点相对于平均值的偏离程度大致符合这个分布。
Z分数的取值范围也可以用来判断数据的异常值。一般来说,Z分数超过3的数据点可以被认为是异常值,因为它们与平均值的偏离程度非常大。异常值可能是由于测量误差、数据录入错误或真实的异常情况导致的。通过识别和处理异常值,我们可以更准确地分析数据和做出决策。
除了在统计学中的应用,Z分数还被广泛应用于其他领域。例如,在金融领域中,Z分数可以用来度量股票的回报率相对于市场回报率的偏离程度,从而帮助投资者判断股票的表现。在医学研究中,Z分数可以用来比较不同患者群体的生物指标,帮助医生进行诊断和治疗决策。

Tips:什么是Z-score?有哪些使用场景?

引自:什么是Z-score?有哪些使用场景?
Z值(z-score,z-values, normal score)又称标准分数(standard score, standardized variable),是一个实测值与平均数的差再除以标准差的过程。Z score标准化是数据处理的一种常用方法。通过它能够将不同量级的数据转化为统一量度的Z score分值进行比较。
用公式表示为:
z=(x-μ)/σ
x为某实测值,μ为平均数,σ为标准差
Z值的量代表着实测值和总体平均值之间的距离,是以标准差为单位计算。
大于平均数的实测值会得到一个正数的Z值,小于平均数的实测值会得到一个负数的Z值。
一句话:
Z score通过(x-μ)/σ将两组或多组数据转化为无单位的Z score分值,使得数据标准统一化,提高了数据可比性,削弱了数据解释性。

这篇关于学习笔记|SPSS|描述变量|按照3倍标准差剔除异常值|标准化值另存为变量|剔除个案|Zscore|箱图|Zscore取值范围的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/364546

相关文章

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Java空指针异常NullPointerException的原因与解决方案

《Java空指针异常NullPointerException的原因与解决方案》在Java开发中,NullPointerException(空指针异常)是最常见的运行时异常之一,通常发生在程序尝试访问或... 目录一、空指针异常产生的原因1. 变量未初始化2. 对象引用被显式置为null3. 方法返回null

redis在spring boot中异常退出的问题解决方案

《redis在springboot中异常退出的问题解决方案》:本文主要介绍redis在springboot中异常退出的问题解决方案,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴... 目录问题:解决 问题根源️ 解决方案1. 异步处理 + 提前ACK(关键步骤)2. 调整Redis消费者组

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

解决Java异常报错:java.nio.channels.UnresolvedAddressException问题

《解决Java异常报错:java.nio.channels.UnresolvedAddressException问题》:本文主要介绍解决Java异常报错:java.nio.channels.Unr... 目录异常含义可能出现的场景1. 错误的 IP 地址格式2. DNS 解析失败3. 未初始化的地址对象解决

python利用backoff实现异常自动重试详解

《python利用backoff实现异常自动重试详解》backoff是一个用于实现重试机制的Python库,通过指数退避或其他策略自动重试失败的操作,下面小编就来和大家详细讲讲如何利用backoff实... 目录1. backoff 库简介2. on_exception 装饰器的原理2.1 核心逻辑2.2