用微雪RP2040-LCD-1.28设计一款模拟电子表,带屏PICO应用

2023-11-07 14:59

本文主要是介绍用微雪RP2040-LCD-1.28设计一款模拟电子表,带屏PICO应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微雪RP2040-LCD-1.28介绍

微雪RP2040-LCD-1.28 是一款国内创新设计的PICO微控制器开发板,其在较小的板型情况下,板载了1.28inch LCD、锂电池充电芯片、六轴传感器(三轴加速度与三轴陀螺仪)等外设。

屏幕及驱动板参数

LCD参数
控制芯片GC9A01A分辨率240(H)RGB x 240(V)
通信接口SPI显示尺寸Φ32.4mm
显示面板IPS像素大小0.135(H)x0.135(V)mm        

圆形显示器的座标问题,X轴Y轴方向

设计开始之前,我跟大家一样好像,这个圆型的屏幕,座标圆点在哪里,X,Y分别是什么方向的。其实圆形的屏幕,跟我们平时用的长方形的显示器一样,你把它想象成一块长方形的显示器,座标圆点在左下角,X轴向右,Y轴向上,超出圆形的像素不显示。

这是程序的最终运行结果

# 导入需要的库
import machine
from machine import Pin,I2C,SPI,PWM,ADC
import time
import math
import framebufI2C_SDA = 6
I2C_SDL = 7DC = 8
CS = 9
SCK = 10
MOSI = 11
RST = 12
BL = 25# 显示屏驱动类
class LCD_GC9A01A(framebuf.FrameBuffer):def __init__(self):self.width = 240self.height = 240self.cs = Pin(CS,Pin.OUT)self.rst = Pin(RST,Pin.OUT)self.cs(1)self.spi = SPI(1,100_000_000,polarity=0, phase=0,sck=Pin(SCK),mosi=Pin(MOSI),miso=None)self.dc = Pin(DC,Pin.OUT)self.dc(1)self.buffer = bytearray(self.height * self.width * 2)super().__init__(self.buffer, self.width, self.height, framebuf.RGB565)self.init_display()self.red   =   0x07E0self.green =   0x001fself.blue  =   0xf800self.white =   0xffffself.fill(self.white)self.show()self.pwm = PWM(Pin(BL))self.pwm.freq(5000)def write_cmd(self, cmd):self.cs(1)self.dc(0)self.cs(0)self.spi.write(bytearray([cmd]))self.cs(1)def write_data(self, buf):self.cs(1)self.dc(1)self.cs(0)self.spi.write(bytearray([buf]))self.cs(1)def set_pwm(self,duty):self.pwm.duty_u16(duty)           #max 65535def init_display(self):"""Initialize dispaly"""  self.rst(1)time.sleep(0.01)self.rst(0)time.sleep(0.01)self.rst(1)time.sleep(0.05)self.write_cmd(0xEF)self.write_cmd(0xEB)self.write_data(0x14) self.write_cmd(0xFE) self.write_cmd(0xEF) self.write_cmd(0xEB)self.write_data(0x14) self.write_cmd(0x84)self.write_data(0x40) self.write_cmd(0x85)self.write_data(0xFF) self.write_cmd(0x86)self.write_data(0xFF) self.write_cmd(0x87)self.write_data(0xFF)self.write_cmd(0x88)self.write_data(0x0A)self.write_cmd(0x89)self.write_data(0x21) self.write_cmd(0x8A)self.write_data(0x00) self.write_cmd(0x8B)self.write_data(0x80) self.write_cmd(0x8C)self.write_data(0x01) self.write_cmd(0x8D)self.write_data(0x01) self.write_cmd(0x8E)self.write_data(0xFF) self.write_cmd(0x8F)self.write_data(0xFF) self.write_cmd(0xB6)self.write_data(0x00)self.write_data(0x20)self.write_cmd(0x36)self.write_data(0x98)self.write_cmd(0x3A)self.write_data(0x05) self.write_cmd(0x90)self.write_data(0x08)self.write_data(0x08)self.write_data(0x08)self.write_data(0x08) self.write_cmd(0xBD)self.write_data(0x06)self.write_cmd(0xBC)self.write_data(0x00)self.write_cmd(0xFF)self.write_data(0x60)self.write_data(0x01)self.write_data(0x04)self.write_cmd(0xC3)self.write_data(0x13)self.write_cmd(0xC4)self.write_data(0x13)self.write_cmd(0xC9)self.write_data(0x22)self.write_cmd(0xBE)self.write_data(0x11) self.write_cmd(0xE1)self.write_data(0x10)self.write_data(0x0E)self.write_cmd(0xDF)self.write_data(0x21)self.write_data(0x0c)self.write_data(0x02)self.write_cmd(0xF0)   self.write_data(0x45)self.write_data(0x09)self.write_data(0x08)self.write_data(0x08)self.write_data(0x26)self.write_data(0x2A)self.write_cmd(0xF1)    self.write_data(0x43)self.write_data(0x70)self.write_data(0x72)self.write_data(0x36)self.write_data(0x37)  self.write_data(0x6F)self.write_cmd(0xF2)   self.write_data(0x45)self.write_data(0x09)self.write_data(0x08)self.write_data(0x08)self.write_data(0x26)self.write_data(0x2A)self.write_cmd(0xF3)   self.write_data(0x43)self.write_data(0x70)self.write_data(0x72)self.write_data(0x36)self.write_data(0x37) self.write_data(0x6F)self.write_cmd(0xED)self.write_data(0x1B) self.write_data(0x0B) self.write_cmd(0xAE)self.write_data(0x77)self.write_cmd(0xCD)self.write_data(0x63)self.write_cmd(0x70)self.write_data(0x07)self.write_data(0x07)self.write_data(0x04)self.write_data(0x0E) self.write_data(0x0F) self.write_data(0x09)self.write_data(0x07)self.write_data(0x08)self.write_data(0x03)self.write_cmd(0xE8)self.write_data(0x34)self.write_cmd(0x62)self.write_data(0x18)self.write_data(0x0D)self.write_data(0x71)self.write_data(0xED)self.write_data(0x70) self.write_data(0x70)self.write_data(0x18)self.write_data(0x0F)self.write_data(0x71)self.write_data(0xEF)self.write_data(0x70) self.write_data(0x70)self.write_cmd(0x63)self.write_data(0x18)self.write_data(0x11)self.write_data(0x71)self.write_data(0xF1)self.write_data(0x70) self.write_data(0x70)self.write_data(0x18)self.write_data(0x13)self.write_data(0x71)self.write_data(0xF3)self.write_data(0x70) self.write_data(0x70)self.write_cmd(0x64)self.write_data(0x28)self.write_data(0x29)self.write_data(0xF1)self.write_data(0x01)self.write_data(0xF1)self.write_data(0x00)self.write_data(0x07)self.write_cmd(0x66)self.write_data(0x3C)self.write_data(0x00)self.write_data(0xCD)self.write_data(0x67)self.write_data(0x45)self.write_data(0x45)self.write_data(0x10)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_cmd(0x67)self.write_data(0x00)self.write_data(0x3C)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_data(0x01)self.write_data(0x54)self.write_data(0x10)self.write_data(0x32)self.write_data(0x98)self.write_cmd(0x74)self.write_data(0x10)self.write_data(0x85)self.write_data(0x80)self.write_data(0x00) self.write_data(0x00) self.write_data(0x4E)self.write_data(0x00)self.write_cmd(0x98)self.write_data(0x3e)self.write_data(0x07)self.write_cmd(0x35)self.write_cmd(0x21)self.write_cmd(0x11)time.sleep(0.12)self.write_cmd(0x29)time.sleep(0.02)self.write_cmd(0x21)self.write_cmd(0x11)self.write_cmd(0x29)def show(self):self.write_cmd(0x2A)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_data(0xef)self.write_cmd(0x2B)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_data(0xEF)self.write_cmd(0x2C)self.cs(1)self.dc(1)self.cs(0)self.spi.write(self.buffer)self.cs(1)lcd = LCD_GC9A01A()     # 实例化一个屏幕驱动,像素宽高为240X240
lcd.set_pwm(65535)             # 设置屏幕亮度,# 清空屏幕
lcd.fill(0xFFFFFF)# 计算圆心坐标和半径
center_x = 120
center_y = 120
radius = 100# 绘制指针和秒表圆弧
while True:# 绘制圆形边框和时间文字for i in range(1, 13):angle = 2 * math.pi * i / 12 - math.pi / 2x1 = center_x + int((radius + 14) * math.cos(angle))y1 = center_y + int((radius + 14) * math.sin(angle))lcd.text(str(i), x1 - 4, y1 - 4, 0x000000)x1 = center_x + int((radius + 8) * math.cos(angle))y1 = center_y + int((radius + 8) * math.sin(angle))x2 = center_x + int((radius - 10) * math.cos(angle))y2 = center_y + int((radius - 10) * math.sin(angle))lcd.line(x1, y1, x2, y2, 0x000000)# 获取当前时间current_time = time.localtime()# 计算小时指针、分钟指针和秒针的位置hour_angle = 2 * math.pi * (current_time[3] % 12 + current_time[4] / 60) / 12 - math.pi / 2hour_x = center_x + int((radius - 50) * math.cos(hour_angle))hour_y = center_y + int((radius - 50) * math.sin(hour_angle))minute_angle = 2 * math.pi * (current_time[4] + current_time[5] / 60) / 60 - math.pi / 2minute_x = center_x + int((radius - 30) * math.cos(minute_angle))minute_y = center_y + int((radius - 30) * math.sin(minute_angle))second_angle = 2 * math.pi * (current_time[5] + current_time[6] / 1000) / 60 - math.pi / 2second_x = center_x + int((radius - 10) * math.cos(second_angle))second_y = center_y + int((radius - 10) * math.sin(second_angle))# 绘制秒表圆弧#lcd.circle(center_x, center_y, radius - 5, 0x000000, width=2, start_angle=0, end_angle=int(360 * current_time[6] / 1000))# 绘制指针lcd.line(center_x, center_y, hour_x, hour_y, 0x0000FF)lcd.line(center_x, center_y, minute_x, minute_y, 0x00FF00)lcd.line(center_x, center_y, second_x, second_y, 0xFF0000)# 刷新屏幕lcd.show()# 暂停 1秒time.sleep(1)# 清空屏幕lcd.fill(0xFFFFFF)

 

这篇关于用微雪RP2040-LCD-1.28设计一款模拟电子表,带屏PICO应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/364415

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2