从零开始实现核密度估计(kernel density estimation,KDE)-python实现

本文主要是介绍从零开始实现核密度估计(kernel density estimation,KDE)-python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题背景

核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
具体原理推导可参考这篇博客。
此篇博客侧重于根据理论公式,给出python实现。

python工具包推荐

seaborn,pandas,scikit-learn中均提供了kde计算及绘图函数,可直接查阅/调用。

理论基础

核密度估计的核心公式如下:
在这里插入图片描述
其中,h为带宽(band_width),K(.)为核函数,本文选取高斯核。
在这里插入图片描述
带宽h是一个超参数,h越小,邻域中参与拟合的点越少。h有多种选取方式,
本文参考网上资料采用如下公式:
在这里插入图片描述
其中c=1.05*数据序列标准差

python实现

根据以上背景,给出kde 计算函数如下:

def get_kde(x,data_array,bandwidth=0.1):def gauss(x):import mathreturn (1/math.sqrt(2*math.pi))*math.exp(-0.5*(x**2))N=len(data_array)res=0if len(data_array)==0:return 0for i in range(len(data_array)):res += gauss((x-data_array[i])/bandwidth)res /= (N*bandwidth)return res

    其中x为待进行估计的数据点,data_array为给定的数据序列(list)。

    KDE计算及绘制demo

    测试环境

    python 3.7
    matplotlib 3.0.3
    numpy 1.16.2

    demo

    def get_kde(x,data_array,bandwidth=0.1):def gauss(x):import mathreturn (1/math.sqrt(2*math.pi))*math.exp(-0.5*(x**2))N=len(data_array)res=0if len(data_array)==0:return 0for i in range(len(data_array)):res += gauss((x-data_array[i])/bandwidth)res /= (N*bandwidth)return res
    import numpy as np
    input_array=np.random.randn(20000).tolist()
    bandwidth=1.05*np.std(input_array)*(len(input_array)**(-1/5))
    x_array=np.linspace(min(input_array),max(input_array),50)
    y_array=[get_kde(x_array[i],input_array,bandwidth) for i in range(x_array.shape[0])]
    

    import matplotlib.pyplot as plt
    plt.figure(1)
    plt.hist(input_array,bins=40,density=True)
    plt.plot(x_array.tolist(),y_array,color=‘red’,linestyle=’-’)
    plt.show()

      运行结果

      在这里插入图片描述
      结果说明:
      图中横轴为数据分布取值,纵轴为概率密度,其中直方图的高度 h = 频数/(总数*每个bin的宽度) ,直方图总面积是1,KDE曲线下总面积也是1。

      参考资料

      1. 维基百科-Kernel density estimation
      2. 知乎相关回答
      3. 核密度估计-CSDN博客

      这篇关于从零开始实现核密度估计(kernel density estimation,KDE)-python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



      http://www.chinasem.cn/article/363962

      相关文章

      使用Python实现IP地址和端口状态检测与监控

      《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

      基于Python打造一个智能单词管理神器

      《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

      Python实现微信自动锁定工具

      《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

      Python中pywin32 常用窗口操作的实现

      《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

      利用Python打造一个Excel记账模板

      《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

      在 Spring Boot 中实现异常处理最佳实践

      《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

      Python中的Walrus运算符分析示例详解

      《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

      python处理带有时区的日期和时间数据

      《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

      Python位移操作和位运算的实现示例

      《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

      如何在 Spring Boot 中实现 FreeMarker 模板

      《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环