从零开始实现核密度估计(kernel density estimation,KDE)-python实现

本文主要是介绍从零开始实现核密度估计(kernel density estimation,KDE)-python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题背景

核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
具体原理推导可参考这篇博客。
此篇博客侧重于根据理论公式,给出python实现。

python工具包推荐

seaborn,pandas,scikit-learn中均提供了kde计算及绘图函数,可直接查阅/调用。

理论基础

核密度估计的核心公式如下:
在这里插入图片描述
其中,h为带宽(band_width),K(.)为核函数,本文选取高斯核。
在这里插入图片描述
带宽h是一个超参数,h越小,邻域中参与拟合的点越少。h有多种选取方式,
本文参考网上资料采用如下公式:
在这里插入图片描述
其中c=1.05*数据序列标准差

python实现

根据以上背景,给出kde 计算函数如下:

def get_kde(x,data_array,bandwidth=0.1):def gauss(x):import mathreturn (1/math.sqrt(2*math.pi))*math.exp(-0.5*(x**2))N=len(data_array)res=0if len(data_array)==0:return 0for i in range(len(data_array)):res += gauss((x-data_array[i])/bandwidth)res /= (N*bandwidth)return res

    其中x为待进行估计的数据点,data_array为给定的数据序列(list)。

    KDE计算及绘制demo

    测试环境

    python 3.7
    matplotlib 3.0.3
    numpy 1.16.2

    demo

    def get_kde(x,data_array,bandwidth=0.1):def gauss(x):import mathreturn (1/math.sqrt(2*math.pi))*math.exp(-0.5*(x**2))N=len(data_array)res=0if len(data_array)==0:return 0for i in range(len(data_array)):res += gauss((x-data_array[i])/bandwidth)res /= (N*bandwidth)return res
    import numpy as np
    input_array=np.random.randn(20000).tolist()
    bandwidth=1.05*np.std(input_array)*(len(input_array)**(-1/5))
    x_array=np.linspace(min(input_array),max(input_array),50)
    y_array=[get_kde(x_array[i],input_array,bandwidth) for i in range(x_array.shape[0])]
    

    import matplotlib.pyplot as plt
    plt.figure(1)
    plt.hist(input_array,bins=40,density=True)
    plt.plot(x_array.tolist(),y_array,color=‘red’,linestyle=’-’)
    plt.show()

      运行结果

      在这里插入图片描述
      结果说明:
      图中横轴为数据分布取值,纵轴为概率密度,其中直方图的高度 h = 频数/(总数*每个bin的宽度) ,直方图总面积是1,KDE曲线下总面积也是1。

      参考资料

      1. 维基百科-Kernel density estimation
      2. 知乎相关回答
      3. 核密度估计-CSDN博客

      这篇关于从零开始实现核密度估计(kernel density estimation,KDE)-python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



      http://www.chinasem.cn/article/363962

      相关文章

      C++中unordered_set哈希集合的实现

      《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

      C++中悬垂引用(Dangling Reference) 的实现

      《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

      SpringBoot基于注解实现数据库字段回填的完整方案

      《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

      Java HashMap的底层实现原理深度解析

      《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

      Java AOP面向切面编程的概念和实现方式

      《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

      Python版本信息获取方法详解与实战

      《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

      一文详解Python如何开发游戏

      《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

      Python函数作用域与闭包举例深度解析

      《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

      Python实现字典转字符串的五种方法

      《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

      Python版本与package版本兼容性检查方法总结

      《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法