疫情后来场说走就走的旅行,Python制作一份可视化的旅行攻略

本文主要是介绍疫情后来场说走就走的旅行,Python制作一份可视化的旅行攻略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

疫情结束后,你最想做什么?摘掉口罩,出门晒晒太阳;吃货们,是去韩国菜?还是撸串?还是火锅?和家人待几天,弥补春节缺失的陪伴;走进曾经熟悉的电影院,把错过的贺岁大片全部都要一一补上。

 

当疫情结束后,是否想要去英雄城市武汉,看看樱花,在户部巷吃上一碗热干面,看一看车来车往的长江大桥。是否将有更多的旅行计划,不管是哪里的美景,都想要去看看。

 

旅行是为了放松心情、体验地方特色。为了一场完美的旅行,制作一份详细的旅行攻略是必不可少的。为此小编在上一篇文章中已爬取了《去哪儿》攻略库,获取了近3.8份攻略数据。数据字段有:区域、目的地、标题、链接、攻略作者、出发日期、天数、照片数、人数、玩法、费用、阅读数、点赞数、评论数、行程等。

 

 

 

 

 

数据预处理

对于获取的数据,我们需要进行进一步的处理以满足分析的需求,我们主要做的数据处理步骤如下:

  • 删除重复值
  • 修正字段
  • 删除不需要字段

具体代码实现

#数据读取
import pandas as pd
import re
#数据读取
base_data =  pd.read_excel('trip_data_merge.xlsx')
#删除重复值
base_data.drop_duplicates(inplace=True)
#分析中不需要的字段
base_data = base_data.drop(['链接'], axis=1)
#字段修正,方便统计
base_data['天数']= base_data['天数'].apply(lambda x :re.sub("\D", "", x) )
base_data['照片数']= base_data['照片数'].apply(lambda x :re.sub("\D", "", x) )
base_data['费用']= base_data['费用'].apply(lambda x :re.sub("\D", "", str(x) ))
base_data['费用'] = base_data['费用'].apply(lambda x : eval(x) if len(x)>0 else 0 )
base_data['date']= base_data['出发日期'].apply(lambda x :x.split( )[0] )
base_data['date_year']= base_data['出发日期'].apply(lambda x :x.split( )[0][:4])
base_data['阅读数']= base_data['阅读数'].apply(lambda x : int(re.sub("\D", "", str(x)))*10000 if str(x).find('万') else x)

数据分析、可视化

 

费用问题

外出旅行,首先要考虑的肯定的费用问题。因疫情原因,在费用的数据分析统计中,我们剔除了2020年的数据,考虑了2017年、2018年、2019年的数据。

 

 

 

上图展示了近三年主要热门目的地人均消费情况,包含国内、国外热门地区。根据数据统计,国外人均平均消费为9461元,国内为3313元,游客在国外消费是国内消费的2.85倍。国内人均消费的排名前四名:丽江、三亚、香港、上海。在国外消费前四名:马尔代夫、法国、美国、日本。为什么游客在马尔代夫的人均消费比上海人均消费高达6倍的差距呢?

 

游客人群

 

马尔代夫游客人群分布

 

 

 

上海游客人群分布

 

 

 

马尔代夫,一个名字听起来就让人浮想联翩的地方,被称作上帝抛洒在人间的项链,人间最后的乐园,吸引了很多人去度假休闲,其中情侣占比高达54.8%,再加上机酒消费,这也成为马尔代夫消费高的一个重要原因,上海游客人群比较分散,其中情侣占比15%左右,一人旅行、三五好友占比相对较高。

逗留时长

上海游客逗留时长

 

 

 

马尔代夫游客逗留时长

 

 

 

判断一个城市对游客对心引力,游客逗留时间是最核心指标。从上图我们可以看到马尔代夫的逗留时间占比中4-7天、8-10天合计占比高达80%以上。上海逗留时间在1-3天占比为52.45%,4-7天、8-10天合计占比约为41%,这样是马尔代夫人均消费高的一个重要因素。

玩法攻略

我们可以看到,美食、购物+美食、短途周末、海滨海岛、自驾等玩法是大家的最爱,探险、环游、骑行等也收到不少人的喜爱,你喜欢什么样的玩法呢?

打卡景点

去一个地方去旅行,有些景点必须要去的,对于一个陌生的城市,怎么样可以快速确定打卡景点呢?小编选择了上海、成都、武汉,看看这些是否有遗漏的打卡景点呢。

 

 

 

 

最赞路线

想去的打卡景点都有了,我们要有一个最完美的路线,小编在下面梳理一下网友点赞最高的路线,你是否满意呢?下面进行图片展示。

 

 

结论

 

至此,小编已带大家了解一下旅游目的地的平均消费情况、玩法攻略、打卡攻略、最赞路线等,如果你有什么问题,欢迎评论区留言,因篇幅展示问题,附上部分核心代码

核心代码展示

#上海游客旅游逗留天数占比
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Fakerc = (Pie().add("",[list(z) for z in zip(list(base_data_city_day_sh['天数']), list(base_data_city_day_sh['num']))],radius=["40%", "55%"],label_opts=opts.LabelOpts(position="outside",formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c}  {per|{d}%}  ",background_color="#eee",border_color="#aaa",border_width=1,border_radius=4,rich={"a": {"color": "#999", "lineHeight": 22, "align": "center"},"abg": {"backgroundColor": "#e3e3e3","width": "100%","align": "right","height": 22,"borderRadius": [4, 4, 0, 0],},"hr": {"borderColor": "#aaa","width": "100%","borderWidth": 0.5,"height": 0,},"b": {"fontSize": 16, "lineHeight": 33},"per": {"color": "#eee","backgroundColor": "#334455","padding": [2, 4],"borderRadius": 2,},},),).set_global_opts(title_opts=opts.TitleOpts(title="上海游客逗留时间占比")).render("上海游客逗留时间占比.html")
)

 

词云图

import stylecloud
from IPython.display import Image # 用于在jupyter lab中显示本地图片
result_gap = ' '.join(result)
# 绘制词云图
stylecloud.gen_stylecloud(text=result_gap, max_words=1000,collocations=False,font_path=r'msyh.ttf',icon_name='fas fa-plane-departure',size=624,output_name='打卡词云图.png')Image(filename='打卡词云图.png') 

这篇关于疫情后来场说走就走的旅行,Python制作一份可视化的旅行攻略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/362549

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统