QuantLib 金融计算——高级话题之模拟跳扩散过程

2023-11-07 08:40

本文主要是介绍QuantLib 金融计算——高级话题之模拟跳扩散过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • QuantLib 金融计算——高级话题之模拟跳扩散过程
    • 跳扩散过程
    • 模拟算法
    • 面临的问题
      • “脏”的方法
      • “干净”的方法
    • 实现
      • 示例
    • 参考文献

如果未做特别说明,文中的程序都是 C++11 代码。

QuantLib 金融计算——高级话题之模拟跳扩散过程

跳扩散过程

1976 年,Merton 最早在衍生品定价中引入并分析了跳扩散过程,正因为如此 QuantLib 中和跳扩散相关的随机过程类称之为 Merton76Process,一个一般的跳扩散过程可以由下面的 SDE 描述,

\[ \frac{dS(t)}{S(t-)} = \mu dt + \sigma dW(t) + dJ(t)\\ J(t) = \sum_{j=1}^{N(t)}(Y_j-1) \]

其中 \(Y_j\) 是随机变量,\(N(t)\) 是计数过程。\(dJ(t)\) 表示 \(J(t)\)\(t\) 时刻发生的跳跃幅度,如果发生一次跳,则幅度为 \(Y_j-1\);如果没有发生跳,则幅度为 0。

在应用于衍生品定价时,需要对上述 SDE 中的项做出一些特殊约定,常见的约定有:

  1. \(N(t)\) 是参数等于 \(\lambda\) 的 Poisson 过程;
  2. \(\log Y_j\) 服从正态分布 \(N(\mu_{jump}, \sigma_{jump}^{2})\)
  3. \(\mu = r - \lambda m\),其中 \(m = E[Y_j] - 1\)\(r\) 代表无风险利率

模拟算法

\(X(t) = \log S(t)\),那么

\[ \begin{aligned} X(t_{i+1}) = & X(t_i) + \left(\mu - \frac12 \sigma^2 \right)(t_{i+1} - t_i)\\ & +\sigma[W(t_{i+1}) - W(t_i)] + \sum_{j = N(t_i)+1}^{N(t_{i+1})}\log Y_j \end{aligned} \]

\(X(t_i)\) 的基础上模拟 \(X(t_{i+1})\) 的算法如下:

  1. 生成 \(Z \sim N(0,1)\)
  2. 生成 \(N \sim \text{Poisson}(\lambda(t_{i+1}-t_i))\),若 \(N=0\),则令 \(M=0\),并转到第 4 步;
  3. 生成 \(\log Y_1,\dots,\log Y_N\),令 \(M = \log Y_1+\dots+\log Y_N\)
  4. \(X(t_{i+1}) = X(t_i) + \left(\mu - \frac12 \sigma^2 \right)(t_{i+1} - t_i) +\sigma \sqrt{t_{i+1} - t_i} Z + M\)

那么

\[ \begin{aligned} S_{t_{i+1}} =& S_{t_i} e^{(r-\lambda m -\frac{1}{2}\sigma^{2})\Delta t+ \sigma Z \sqrt{\Delta t} + M}\\ =& S_{t_i} e^{(r-\frac{1}{2}\sigma^{2})\Delta t+ \sigma Z \sqrt{\Delta t}}e^{(-\lambda m)\Delta t+M} \end{aligned} \]

其中,\(\Delta t = t_{i+1} - t_i\),而 \(e^{(-\lambda m)\Delta t+M}\) 是跳扩散相对于一般 Black-Scholes-Merton 过程的修正项。

面临的问题

目前 QuantLib 中提供的 Merton76Process 类只能配合“解析定价引擎”使用,本身不具备模拟随机过程路径的功能。究其原因,问题出在 QuantLib 的编码约定和 StochasticProcess1D 提供的接口两方面:

  1. QuantLib 中约定 StochasticProcess 派生出的子类仅能描述 SDE 的结构信息,也就是 SDE 的参数、漂移和扩散项的函数形式,子类不携带有关随机数生成的信息,所有随机数生成的相关信息均由 Monte Carlo 框架中其他组件控制;
  2. 生成随机过程路径的核心函数是 evolve 方法,StochasticProcess1D 提供的接口是 evolve(Time t0, Real x0, Time dt, Real dw)。如果 Merton76Process 按约定实现 evolve 方法的话,形式必须是 evolve(Time t0, Real x0, Time dt, const Array &dw),因为模拟跳需要额外的随机性,所以 dw 必须是一个 Array。很明显,不匹配。

“脏”的方法

在不改变当前接口的前提下,若要实现模拟跳扩散过程,需要用比较“”一点儿的手段,即打破约定,让随机过程类携带一个随机数发生器,为模拟跳提供额外的随机性。

具体来说,需要声明一个 Merton76Process 的派生类,该类携带一个高斯随机数发生器。因为从数学上来讲跳扩散过程推广自一般 Black-Scholes-Merton 过程,添加了一个修正项,所以遵循“适配器模式”(或“装饰器模式”)的思想,绝大部分计算可以委托给一个 BlackScholesMertonProcess 对象,仅需要对 driftevolve 方法作必要的修改。

“干净”的方法

当然,“干净”的方法要改变当前接口:

  1. 声明一个和 StochasticProcess1D 平行的新类 StochasticProcess1DJump,二者唯一的区别是 evolve 方法,在 StochasticProcess1DJump 中形式是 evolve(Time t0, Real x0, Time dt, const Array &dw)
  2. Merton76Process 改成继承自 StochasticProcess1DJump

实现

下面的代码实现了前面提到的“脏”的方法,因为随机数发生器的种类有很多,且没有基类提供统一的接口,所以使用了模板技术让类可以接受不同类型的随机数发生器。同时,许多计算被委托给了一个 BlackScholesMertonProcess 对象。

#ifndef MERTON76JUMPDIFFUSIONPROCESS_HPP
#define MERTON76JUMPDIFFUSIONPROCESS_HPP#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/poissondistribution.hpp>
#include <ql/math/randomnumbers/boxmullergaussianrng.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/merton76process.hpp>namespace QuantLib
{
template<typename GAUSS_RNG>
class Merton76JumpDiffusionProcess : public Merton76Process
{public:Merton76JumpDiffusionProcess(const Handle<Quote>& stateVariable,const Handle<YieldTermStructure>& dividendTS,const Handle<YieldTermStructure>& riskFreeTS,const Handle<BlackVolTermStructure>& blackVolTS,const Handle<Quote>& jumpInt,const Handle<Quote>& logJMean,const Handle<Quote>& logJVol,const GAUSS_RNG& gauss_rng,const ext::shared_ptr<discretization>& disc =ext::shared_ptr<discretization>(new EulerDiscretization)): Merton76Process(stateVariable,dividendTS,riskFreeTS,blackVolTS,jumpInt,logJMean,logJVol,disc), blackProcess_(new BlackScholesMertonProcess(stateVariable,dividendTS,riskFreeTS,blackVolTS,disc)), gauss_rng_(gauss_rng){}virtual ~Merton76JumpDiffusionProcess() {}Real x0() const{return blackProcess_->x0();}Time time(const Date& d) const{return blackProcess_->time(d);}Real diffusion(Time t,Real x) const{return blackProcess_->diffusion(t, x);}Real apply(Real x0,Real dx) const{return blackProcess_->apply(x0, dx);}Size factors() const{return 1;}Real drift(Time t,Real x) const{Real lambda_ = Merton76Process::jumpIntensity()->value();Real delta_ = Merton76Process::logJumpVolatility()->value();Real nu_ = Merton76Process::logMeanJump()->value();Real m_ = std::exp(nu_ + 0.5 * delta_ * delta_) - 1;return blackProcess_->drift(t, x) - lambda_ * m_;}Real evolve(Time t0,Real x0,Time dt,Real dw) const;private:const CumulativeNormalDistribution cumNormalDist_;ext::shared_ptr<GeneralizedBlackScholesProcess> blackProcess_;GAUSS_RNG gauss_rng_;
};template<typename GAUSS_RNG>
Real Merton76JumpDiffusionProcess<GAUSS_RNG>::evolve(Time t0,Real x0,Time dt,Real dw) const
{Real lambda_ = Merton76Process::jumpIntensity()->value();Real delta_ = Merton76Process::logJumpVolatility()->value();Real nu_ = Merton76Process::logMeanJump()->value();Real m_ = std::exp(nu_ + 0.5 * delta_ * delta_) - 1;Real p = cumNormalDist_(gauss_rng_.next().value);if (p < 0.0)p = 0.0;else if (p >= 1.0)p = 1.0 - QL_EPSILON;Real j = gauss_rng_.next().value;const Real n = InverseCumulativePoisson(lambda_ * dt)(p);Real retVal = blackProcess_->evolve(t0, x0, dt, dw);retVal *=std::exp(-lambda_ * m_ * dt + nu_ * n + delta_ * std::sqrt(n) * j);return retVal;
}
}
#endif // MERTON76JUMPDIFFUSIONPROCESS_HPP

示例

下面模拟两条曲线

#include <iostream>#include <ql/math/randomnumbers/boxmullergaussianrng.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/date.hpp>
#include <ql/time/daycounters/actualactual.hpp>#include "Merton76JumpDiffusionProcess.hpp"int main() {using namespace std;using namespace QuantLib;Date refDate = Date(27, Mar, 2019);Rate riskFreeRate = 0.03;Rate dividendRate = 0.01;Real spot = 52.0;Rate vol = 0.2;Calendar cal = TARGET();DayCounter dc = ActualActual();ext::shared_ptr<YieldTermStructure> rdStruct(new FlatForward(refDate, riskFreeRate, dc));ext::shared_ptr<YieldTermStructure> rqStruct(new FlatForward(refDate, dividendRate, dc));Handle<YieldTermStructure> rdHandle(rdStruct);Handle<YieldTermStructure> rqHandle(rqStruct);ext::shared_ptr<SimpleQuote> spotQuote(new SimpleQuote(spot));Handle<Quote> spotHandle(spotQuote);ext::shared_ptr<BlackVolTermStructure> volQuote(new BlackConstantVol(refDate, cal, vol, dc));Handle<BlackVolTermStructure> volHandle(volQuote);// Specify the jump intensity, jump mean and// jump volatility objectsReal jumpIntensity = 0.2;    // lambdaReal jumpVolatility = 0.3;Real jumpMean = 0.0;ext::shared_ptr<SimpleQuote> jumpInt(new SimpleQuote(jumpIntensity));ext::shared_ptr<SimpleQuote> jumpVol(new SimpleQuote(jumpVolatility));ext::shared_ptr<SimpleQuote> jumpMn(new SimpleQuote(jumpMean));Handle<Quote> jumpI(jumpInt), jumpV(jumpVol), jumpM(jumpMn);ext::shared_ptr<BlackScholesMertonProcess> bsmProcess(new BlackScholesMertonProcess(spotHandle, rqHandle, rdHandle, volHandle));unsigned long seed = 12324u;MersenneTwisterUniformRng unifMt(seed);MersenneTwisterUniformRng unifMtJ(25u);typedef BoxMullerGaussianRng<MersenneTwisterUniformRng> GAUSS;GAUSS bmGauss(unifMt);GAUSS jGauss(unifMtJ);ext::shared_ptr<Merton76JumpDiffusionProcess<GAUSS>> mtProcess(new Merton76JumpDiffusionProcess<GAUSS>(spotHandle, rqHandle, rdHandle, volHandle,jumpI, jumpM, jumpV, jGauss));Time dt = 0.004, t = 0.0;Real x = spotQuote->value();Real y = spotQuote->value();Real dw;Size numVals = 250;std::cout << "Time, Jump, NoJump" << std::endl;std::cout << t << ", " << x << ", " << y << std::endl;for (Size j = 1; j <= numVals; ++j) {dw = bmGauss.next().value;x = mtProcess->evolve(t, x, dt, dw);y = bsmProcess->evolve(t, y, dt, dw);std::cout << t + dt << ", " << x << ", " << y << std::endl;t += dt;}return EXIT_SUCCESS;
}

232518-20190331114034792-2013823195.png

参考文献

  1. 《金融工程中的蒙特卡罗方法》

转载于:https://www.cnblogs.com/xuruilong100/p/10630691.html

这篇关于QuantLib 金融计算——高级话题之模拟跳扩散过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/362475

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Java中的for循环高级用法

《Java中的for循环高级用法》本文系统解析Java中传统、增强型for循环、StreamAPI及并行流的实现原理与性能差异,并通过大量代码示例展示实际开发中的最佳实践,感兴趣的朋友一起看看吧... 目录前言一、基础篇:传统for循环1.1 标准语法结构1.2 典型应用场景二、进阶篇:增强型for循环2.

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.