caffe源码解析:卷积乘法中用到的im2col及col2im

2023-11-07 05:59

本文主要是介绍caffe源码解析:卷积乘法中用到的im2col及col2im,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这两个函数其实完成的功能比较简单,im2col就是把矩阵按卷积乘法所需,变换成列向量,col2im是一个逆过程

从下面这张图你一眼就能看明白im2col的操作(caffe中卷积计算都是Matrix_Kernel * Matrix_Col),因为都列出来太长了,我只列出了前4个,注意这是四周围完全没有填充0的情况,

 

col2im是一个反过来的过程,那么你可能会好奇,这两个操作能完全可逆吗?

事实上,结构是可逆的,结果不是,下面这个图很好地说明了展开的计算过程(图片比较大,可下载到电脑上看),

下面是一个可单独运行的测试源码,你可以随便编译跑一跑

#include <iostream>
using namespace std;inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {return static_cast<unsigned>(a) < static_cast<unsigned>(b);
}template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype* Y) {if (alpha == 0) {memset(Y, 0, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)return;}for (int i = 0; i < N; ++i) {Y[i] = alpha;}
}template <typename Dtype>
void im2col_cpu(const Dtype* data_im, const int channels,const int height, const int width, const int kernel_h, const int kernel_w,const int pad_h, const int pad_w,const int stride_h, const int stride_w,const int dilation_h, const int dilation_w,Dtype* data_col) {const int output_h = (height + 2 * pad_h -(dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;const int output_w = (width + 2 * pad_w -(dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;const int channel_size = height * width;for (int channel = channels; channel--; data_im += channel_size) {for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {int input_row = -pad_h + kernel_row * dilation_h;for (int output_rows = output_h; output_rows; output_rows--) {if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {for (int output_cols = output_w; output_cols; output_cols--) {*(data_col++) = 0;}}else {int input_col = -pad_w + kernel_col * dilation_w;for (int output_col = output_w; output_col; output_col--) {if (is_a_ge_zero_and_a_lt_b(input_col, width)) {*(data_col++) = data_im[input_row * width + input_col];}else {*(data_col++) = 0;}input_col += stride_w;}}input_row += stride_h;}}}}
}template <typename Dtype>
void col2im_cpu(const Dtype* data_col, const int channels,const int height, const int width, const int kernel_h, const int kernel_w,const int pad_h, const int pad_w,const int stride_h, const int stride_w,const int dilation_h, const int dilation_w,Dtype* data_im) {caffe_set(height * width * channels, Dtype(0), data_im);const int output_h = (height + 2 * pad_h -(dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;const int output_w = (width + 2 * pad_w -(dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;const int channel_size = height * width;for (int channel = channels; channel--; data_im += channel_size) {for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {int input_row = -pad_h + kernel_row * dilation_h;for (int output_rows = output_h; output_rows; output_rows--) {if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {data_col += output_w;}else {int input_col = -pad_w + kernel_col * dilation_w;for (int output_col = output_w; output_col; output_col--) {if (is_a_ge_zero_and_a_lt_b(input_col, width)) {data_im[input_row * width + input_col] += *data_col;}data_col++;input_col += stride_w;}}input_row += stride_h;}}}}
}// 如果想运行6x6的矩阵,请取消下面的注释,并把5X5那段注释掉
int dataim[] = {1,2,3,4,5,6,5,6,7,8,9,10,6,5,4,3,2,1,10,9,8,7,6,5,4,3,2,1,5,6,3,2,1,6,5,4,
};int datacol[1000];
int outim[50];int main()
{im2col_cpu(dataim, 1, 6, 6, 3, 3, 0, 0, 1, 1, 1, 1, datacol);col2im_cpu(datacol, 1, 6, 6, 3, 3, 0, 0, 1, 1, 1, 1, outim);return 0;
}// 如果想运行5x5的矩阵,请取消下面的注释, 并把上面那段注释掉
/* 
int dataim[] = {1,2,3,4,5,6,7,8,9,10,5,4,3,2,1,10,9,8,7,6,4,3,2,1,5,
};int datacol[1000];
int outim[50];int main()
{im2col_cpu(dataim, 1, 5, 5, 3, 3, 0, 0, 1, 1, 1, 1, datacol);col2im_cpu(datacol, 1, 5, 5, 3, 3, 0, 0, 1, 1, 1, 1, outim);return 0;
}*/

按上面源码的操作,先运行im2col,再运行col2im,结果就很有意思了,相当于每个元素都乘了一个放大系数,只是不同的位置的放大系数是不一样的,看下面的图

仔细看那个放大系数矩阵,非常有规律,有木有?

AI视像算法学习群:824991413

这篇关于caffe源码解析:卷积乘法中用到的im2col及col2im的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361692

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二