数字信号处理|Matlab根据z域下因果LTI系统函数画零极点图并判断稳定性

本文主要是介绍数字信号处理|Matlab根据z域下因果LTI系统函数画零极点图并判断稳定性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. LTI系统的系统函数

已知差分方程(y表示输出,x表示激励输入):

\large \sum\limits_{k = 0}^M {\mathop a\nolimits_k y\left( {n - k} \right)} = \sum\limits_{m = 0}^M {\mathop b\nolimits_m x\left( {n - m} \right)} \

将上式进行Z变换:

\large \sum\limits_{k = 0}^M {\mathop a\nolimits_k Y\left( z \right)} \mathop z\nolimits^{ - k} = \sum\limits_{m = 0}^M {\mathop b\nolimits_m X\left( z \right)} \mathop z\nolimits^{ - m} \

最后整理等式得到系统函数H(z):

\large H\left( z \right) = \frac{​{Y\left( z \right)}}{​{X\left( z \right)}} = \frac{​{\sum\limits_{m = 0}^M {\mathop b\nolimits_m } \mathop z\nolimits^{ - m} }}{​{\sum\limits_{k = 0}^M {\mathop a\nolimits_k } \mathop z\nolimits^{ - k} }}\ 

注意:b是分子系数(输入X系数);a是分母系数(输出Y系数) 


2. LTI系统条件下的因果、稳定系统 

2.1 因果系统

满足因果系统的充要条件:

时域:h(n)为因果系列,即: 当n<0 时 h(n) < 0

Or

z域:要满足ROC(收敛域在圆外)即:\large \mathop R\nolimits_{\mathop x\nolimits^ - } < \left| z \right| \le \infty \

2.2 稳定系统

满足稳定系统的充要条件:

时域:h(n)绝对可和,即:                \large \sum\limits_{n = - \infty }^\infty {\left| {h\left( n \right)} \right|} < \infty \

Or

z域:ROC(收敛域)包含单位圆


3. 使用的重要函数 

  • roots():求根(用来求零点和极点)
  • zplane():画零极点图

4. 代码总览

解决的问题:判断该LTI因果系统的稳定性

b = [1 2.3 1.32 0.52];% x 的系数(分子)
a = [1 -1.78 2.4 0.55];% y 的系数(分母)%画零极点图并求出零极点
value_zero = roots(b);%零点
value_pole = roots(a);%极点
figure
zplane(b,a);% zplane画零极点图,○表示零点,×表示极点
fprintf('零点是:%f',value_zero);
fprintf('极点是: %f',value_pole);%判断系统稳定性
if max(value_pole) > 1disp("该系统不是稳定系统");
elsedisp("该系统是稳定系统");
end

 结果:

 

 

这篇关于数字信号处理|Matlab根据z域下因果LTI系统函数画零极点图并判断稳定性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359724

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一