【从零开始学习深度学习】13. 防止过拟合方法:权重衰减(L2惩罚项)介绍及示例演示

本文主要是介绍【从零开始学习深度学习】13. 防止过拟合方法:权重衰减(L2惩罚项)介绍及示例演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇文章中介绍了过拟合现象,即模型的训练误差远小于它在测试集上的误差。虽然增大训练数据集可能会减轻过拟合,但是获取额外的训练数据往往代价高昂。本节介绍应对过拟合问题的常用方法:权重衰减(weight decay)

目录

  • 1 权重衰减
    • 1.1 方法
    • 1.2 高维线性回归示例
    • 1.3 从零开始实现带权重衰减的回归模型
    • 1.4 权重衰减的Pytorch简洁实现
    • 小结

1 权重衰减

1.1 方法

权重衰减等价于 L 2 L_2 L2 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。我们先描述 L 2 L_2 L2范数正则化,再解释它为何又称权重衰减。

L 2 L_2 L2范数正则化在模型原损失函数基础上添加 L 2 L_2 L2范数惩罚项,从而得到训练所需要最小化的函数。 L 2 L_2 L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归损失函数
ℓ ( w 1 , w 2 , b ) = 1 n ∑ i = 1 n 1 2 ( x 1 ( i ) w 1 + x 2 ( i ) w 2 + b − y ( i ) ) 2 \ell(w_1, w_2, b) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right)^2 (w1,w2,b)=n1i=1n21(x1(i)w1+x2(i)w2+by(i))2

为例,其中 w 1 , w 2 w_1, w_2 w1,w2是权重参数, b b b是偏差参数,样本 i i i的输入为 x 1 ( i ) , x 2 ( i ) x_1^{(i)}, x_2^{(i)} x1(i),x2(i),标签为 y ( i ) y^{(i)} y(i),样本数为 n n n。将权重参数用向量 w = [ w 1 , w 2 ] \boldsymbol{w} = [w_1, w_2] w=[w1,w2]表示,带有 L 2 L_2 L2范数惩罚项的新损失函数为

ℓ ( w 1 , w 2 , b ) + λ 2 n ∥ w ∥ 2 , \ell(w_1, w_2, b) + \frac{\lambda}{2n} \|\boldsymbol{w}\|^2, (w1,w2,b)+2nλw2,

其中超参数 λ > 0 \lambda > 0 λ>0。当权重参数均为0时,惩罚项最小。当 λ \lambda λ较大时,惩罚项在损失函数中的比重较大,这通常会使学到的权重参数的元素较接近0。当 λ \lambda λ设为0时,惩罚项完全不起作用。上式中 L 2 L_2 L2范数平方 ∥ w ∥ 2 \|\boldsymbol{w}\|^2 w2展开后得到 w 1 2 + w 2 2 w_1^2 + w_2^2 w12+w22。有了 L 2 L_2 L2范数惩罚项后,在小批量随机梯度下降中,我们将线性回归中权重 w 1 w_1 w1 w 2 w_2 w2的迭代方式更改为

w 1 ← ( 1 − η λ ∣ B ∣ ) w 1 − η ∣ B ∣ ∑ i ∈ B x 1 ( i ) ( x 1 ( i ) w 1 + x 2 ( i ) w 2 + b − y ( i ) ) , w 2 ← ( 1 − η λ ∣ B ∣ ) w 2 − η ∣ B ∣ ∑ i ∈ B x 2 ( i ) ( x 1 ( i ) w 1 + x 2 ( i ) w 2 + b − y ( i ) ) . \begin{aligned} w_1 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_1^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\ w_2 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_2^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right). \end{aligned} w1w2(1Bηλ)w1BηiBx1(i)(x1(i)w1+x2(i)w2+by(i)),(1Bηλ)w2BηiBx2(i)(x1(i)w1+x2(i)w2+by(i)).

可见, L 2 L_2 L2范数正则化令权重 w 1 w_1 w1 w 2 w_2 w2先自乘小于1的数,再减去不含惩罚项的梯度。因此, L 2 L_2 L2范数正则化又叫权重衰减。权重衰减通过惩罚绝对值较大的模型参数为需要学习的模型增加了限制,这可能对过拟合有效

1.2 高维线性回归示例

下面,我们以高维线性回归为例来引入一个过拟合问题,并使用权重衰减来应对过拟合。设数据样本特征的维度为 p p p。对于训练数据集和测试数据集中特征为 x 1 , x 2 , … , x p x_1, x_2, \ldots, x_p x1,x2,,xp的任一样本,我们使用如下的线性函数来生成该样本的标签:

y = 0.05 + ∑ i = 1 p 0.01 x i + ϵ y = 0.05 + \sum_{i = 1}^p 0.01x_i + \epsilon y=0.05+i=1p0.01xi+ϵ

其中噪声项 ϵ \epsilon ϵ服从均值为0、标准差为0.01的正态分布。为了较容易地观察过拟合,我们考虑高维线性回归问题,如设维度 p = 200 p=200 p=200;同时,我们特意把训练数据集的样本数设低,如20。

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
import d2lzh_pytorch as d2ln_train, n_test, num_inputs = 20, 100, 200
true_w, true_b = torch.ones(num_inputs, 1) * 0.01, 0.05features = torch.randn((n_train + n_test, num_inputs))
labels = torch.matmul(features, true_w) + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
train_features, test_features = features[:n_train, :], features[n_train:, :]
train_labels, test_labels = labels[:n_train], labels[n_train:]

1.3 从零开始实现带权重衰减的回归模型

下面先介绍从零开始实现权重衰减的方法:通过在目标函数后添加 L 2 L_2 L2范数惩罚项来实现权重衰减。

1.3.1 初始化模型参数

首先,定义随机初始化模型参数的函数。该函数为每个参数都附上梯度。

def init_params():w = torch.randn((num_inputs, 1), requires_grad=True)b = torch.zeros(1, requires_grad=True)return [w, b]

1.3.2 定义 L 2 L_2 L2范数惩罚项

下面定义 L 2 L_2 L2范数惩罚项:这里只惩罚模型的权重参数。

def l2_penalty(w):return (w**2).sum() / 2

1.3.3 定义训练和测试

下面定义如何在训练数据集和测试数据集上分别训练和测试模型:在计算最终的损失函数时添加 L 2 L_2 L2范数惩罚项。

batch_size, num_epochs, lr = 1, 100, 0.003
net, loss = d2l.linreg, d2l.squared_lossdataset = torch.utils.data.TensorDataset(train_features, train_labels)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)def fit_and_plot(lambd):w, b = init_params()train_ls, test_ls = [], []for _ in range(num_epochs):for X, y in train_iter:# 添加了L2范数惩罚项l = loss(net(X, w, b), y) + lambd * l2_penalty(w)l = l.sum()if w.grad is not None:w.grad.data.zero_()b.grad.data.zero_()l.backward()d2l.sgd([w, b], lr, batch_size)train_ls.append(loss(net(train_features, w, b), train_labels).mean().item())test_ls.append(loss(net(test_features, w, b), test_labels).mean().item())d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',range(1, num_epochs + 1), test_ls, ['train', 'test'])print('L2 norm of w:', w.norm().item())

1.3.4 观察过拟合

训练并测试高维线性回归模型。当lambd设为0时,我们没有使用权重衰减。结果训练误差远小于测试集上的误差。这是典型的过拟合现象。

fit_and_plot(lambd=0)

输出:

L2 norm of w: 15.114808082580566

在这里插入图片描述

1.3.5 使用权重衰减

下面我们使用权重衰减。可以看出,训练误差虽然有所提高,但测试集上的误差有所下降。过拟合现象得到一定程度的缓解。另外,权重参数的 L 2 L_2 L2范数比不使用权重衰减时的更小,此时的权重参数更接近0。

fit_and_plot(lambd=3)

输出:

L2 norm of w: 0.035220853984355927

在这里插入图片描述

1.4 权重衰减的Pytorch简洁实现

这里我们直接在构造优化器实例时通过weight_decay参数来指定权重衰减超参数。默认下,PyTorch会对权重和偏差同时衰减。我们可以分别对权重和偏差构造优化器实例,从而只对权重衰减。

def fit_and_plot_pytorch(wd):# 对权重参数衰减。权重名称一般是以weight结尾net = nn.Linear(num_inputs, 1)nn.init.normal_(net.weight, mean=0, std=1)nn.init.normal_(net.bias, mean=0, std=1)optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr)  # 不对偏差参数衰减train_ls, test_ls = [], []for _ in range(num_epochs):for X, y in train_iter:l = loss(net(X), y).mean()optimizer_w.zero_grad()optimizer_b.zero_grad()l.backward()# 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差optimizer_w.step()optimizer_b.step()train_ls.append(loss(net(train_features), train_labels).mean().item())test_ls.append(loss(net(test_features), test_labels).mean().item())d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',range(1, num_epochs + 1), test_ls, ['train', 'test'])print('L2 norm of w:', net.weight.data.norm().item())

与从零开始实现权重衰减的实验现象类似,使用权重衰减可以在一定程度上缓解过拟合问题。

fit_and_plot_pytorch(0)   # 不使用衰减

输出:

L2 norm of w: 12.86785888671875

在这里插入图片描述

fit_and_plot_pytorch(3)  # 使用衰减

输出:

L2 norm of w: 0.09631537646055222

在这里插入图片描述

小结

  • 正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。
  • 权重衰减等价于 L 2 L_2 L2范数正则化,通常会使学到的权重参数较接近0。
  • 权重衰减可以通过优化器中的weight_decay超参数来指定。
  • 可以定义多个优化器实例对不同的模型参数使用不同的迭代方法。

如果内容对你有帮助,感谢点赞+关注哦!

关注下方GZH:阿旭算法与机器学习,可获取更多干货内容~欢迎共同学习交流

这篇关于【从零开始学习深度学习】13. 防止过拟合方法:权重衰减(L2惩罚项)介绍及示例演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359564

相关文章

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构