.Net Core中利用TPL(任务并行库)构建Pipeline处理Dataflow

2023-11-06 14:48

本文主要是介绍.Net Core中利用TPL(任务并行库)构建Pipeline处理Dataflow,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习的过程中,看一些一线的技术文档很吃力,而且考虑到国内那些技术牛人英语都不差的,要向他们看齐,所以每天下班都在疯狂地背单词,博客有些日子没有更新了,见谅见谅 

什么是TPL?

Task Parallel Library (TPL), 在.NET Framework 4微软推出TPL,并把TPL作为编写多线程和并行代码的首选方式,但是,在国内,到目前为止好像用的人并不多。(TPL)是System.Threading和System.Threading.Tasks命名空间中的一组公共类型和API 。TPL的目的是通过简化向应用程序添加并行性和并发性的过程来提高开发人员的工作效率,TPL动态地扩展并发度,以最有效地使用所有可用的处理器。通过使用TPL,您可以最大限度地提高代码的性能,让我们专注于程序本身而不用去关注负责的多线程管理。

出自: https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl

为什么使用TPL?

在上面介绍了什么是TPL,可能大家还是云里雾里,不知道TPL的好处到底是什么。

我在youtube上找到了一个优秀的视频,讲述的是TPL和Thread的区别,我觉得对比一下,TPL的优势很快就能体现出来,如果大家能打开的话建议大家一定要看看。

地址是:https://www.youtube.com/watch?v=No7QqSc5cl8

现如今,我们的电脑的CPU怎么也是2核以上,下面假设我的电脑是四核的,我们来做一个实验。

使用Thread

代码中,如果使用Thread来处理任务,如果不做特出的处理,只是thread.Start(),监测电脑的核心的使用情况是下面这样的。

640?wx_fmt=png

每一条线代表CPU某个核心的使用情况,明显,随着代码Run起来,其实只有某一个核心的使用率迅速提升,其他核心并无明显波动,为什么会这样呢?

 

640?wx_fmt=jpeg

原来,默认情况下,操作系统并不会调用所有的核心来处理任务,即使我们使用多线程,其实也是在一个核心里面运行这些Thread,而且Thread之间涉及到线程同步等问题,其实,效率也不会明显提高。

使用TPL

在代码中,引入了TPL来处理相同的任务,再次监视各个核心的使用情况,效果就变得截然不同,如下。

640?wx_fmt=png

可以看到各个核心的使用情况都同时有了明显的提高。

640?wx_fmt=png

说明使用TPL后,不再是使用CPU的某个核心来处理任务了,而是TPL自动把任务分摊给每个核心来处理,处理效率可想而知,理论上会有明显提升的(为什么说理论上?和使用多线程一样,各个核心之间的同步管理也是要占用一定的效率的,所以对于并不复杂的任务,使用TPL可能适得其反)。

实验结果出自https://www.youtube.com/watch?v=No7QqSc5cl8

看了这个实验讲解,是不是理解了上面所说的这句。

TPL的目的是通过简化向应用程序添加并行性和并发性的过程来提高开发人员的工作效率,TPL动态地扩展并发度,以最有效地使用所有可用的处理器。

 

所以说,使用TPL 来处理多线程任务可以让你不必吧把精力放在如何提高多线程处理效率上,因为这一切,TPL 能自动地帮你完成。

TPL Dataflow?

TPL处理Dataflow是TPL强大功能中的一种,它提供一套完整的数据流组件,这些数据流组件统称为TPL Dataflow Library,那么,在什么场景下适合使用TPL Dataflow Library呢?

官方举的一个 栗子 再恰当不过:

例如,通过TPL Dataflow提供的功能来转换图像,执行光线校正或防红眼,可以创建管道数据流组件,管道中的每个功能可以并行执行,并且TPL能自动控制图像流在不同线程之间的同步,不再需要Thread 中的Lock。

TPL数据流库由Block组成,Block是缓冲和处理数据的单元,TPL定义了三种最基础的Block。

source blocksSystem.Threading.Tasks.Dataflow.ISourceBlock <TOutput>),源块充当数据源并且可以从中读取。

target blocksSystem.Threading.Tasks.Dataflow.ITargetBlock <TInput>,目标块充当数据接收器并可以写入。

propagator blocksSystem.Threading.Tasks.Dataflow.IPropagatorBlock <TInput,TOutput>),传播器块充当源块和目标块,并且可以被读取和写入。它继承自ISourceBlock <TOutput>ITargetBlock <TInput>

 

还有其他一些个性化的Block,但其实他们都是对这三种Block进行一些扩充,可以结合下面的代码来理解这三种Block.

Code Show

1.source block 和 target block 合并成propagator block.

640?wx_fmt=png

可以看到,我定义了BufferBlock和ActionBlock,它们分别继承于ISourceBlock 和 ITargetBlock ,所以说,他们其实就是源块和目标块,在new actionBlock()中传入了一个Action<String>,该Action就是该Block所执行的任务。 最后,DataflowBlock.Encapsulate(actionBlock, bufferBlock)把源块和目标块合并成了一个传递块。

2.TransformBlock

640?wx_fmt=png

TransfromBlock继承了IPropagatorBlock,所以它本身就是一个传递块,所以它除了要处理出入数据,还要返回数据,所以给new TransformBlock()中传入的是Func<TInput, TOutput>而不是Action<TInput>.

 

3.TargetBlock来收尾

640?wx_fmt=png

TargetBlock只能写入并处理数据,不能读取,所以TargetBlock适合作为Pipeline的最后一个Block。

 

4.控制每个Block的并行度

在在构造TargetBlock(包括其子类)的时候,可以传入ExecutionDataflowBlockOptions参数,ExecutionDataflowBlockOptions对象里面有一个MaxDegreeOfParallelism属性,通过改制,可以控制该Block的同时处理任务的数量(可以理解成线程数)。

640?wx_fmt=png

5.构建Pipeline,连接Block

640?wx_fmt=png

通过

ISourceBlock<TOutput>.LinkTo(ITargetBlock<TOutput> target, DataflowLinkOptions linkOption)

方法,可以把Block连接起来,即构建Pipeline,当DataflowLinkOptions对象的PropagateCompletion属性为true时,SorceBlock任务处理完成是,会把TargetBlock也标记为完成。

 

Block被标记为Complete 后,无法传入新的数据了,即不能再处理新的任务了。

 

6.Pipeline的运行

640?wx_fmt=png

Pipeline构建好后,我们只需要给第一个Block传入数据,该数据就会在管道内流动起来了,所有数据传入完成后,调用Block的Complete方法,把该Block标记为完成,就不可以再往里面Post数据了。

640?wx_fmt=png


测试运行如图:

640?wx_fmt=png

我来解释一下,为什么是这么运行的,因为把管道的并行度设置为2,所以每个Block可以同时处理两个任务,所以,如果给管道传入四个字符 ,每个字符作为一个任务,假设传入  “码农阿宇”四个任务,会时这样的一个过程…..

  1. 码   农  两个首先进入Process1,

  2. 处理完成后,码  农   两个任务流出,

  3. Process1位置空出来, 阿  宇 两个任务流入 Process1,

  4. 码  农 两个任务流向 Process2,

  5. 阿  宇 从 Process1 处理完成后流出,此时Process1任务完成

  6. 码  农 流出 Process2 ,同时 阿 宇  流入 Process2 ……

  7. 依此类推…. 

该项目Github地址: https://github.com/liuzhenyulive/Tpl-Dataflow-Demo

参考文献:https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/dataflow-task-parallel-library


原文地址: https://www.cnblogs.com/CoderAyu/p/9757389.html


 

.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com

640?wx_fmt=jpeg

这篇关于.Net Core中利用TPL(任务并行库)构建Pipeline处理Dataflow的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357253

相关文章

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核