DCU服务器基于Docker开发

2023-11-06 08:50
文章标签 服务器 开发 docker dcu

本文主要是介绍DCU服务器基于Docker开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DCU服务器使用说明

基本信息

海光CPU

cat /proc/cpuinfoprocessor	: 127
vendor_id	: HygonGenuine
cpu family	: 24
model		: 2
model name	: Hygon C86 7381 32-core Processor
stepping	: 2
microcode	: 0x80901047
cpu MHz		: 2490.922
cache size	: 512 KB
physical id	: 1
siblings	: 64
core id		: 31
cpu cores	: 32

曙光DCU

rocm相关命令

rocm-smi相当于nvidia-smi

[root@dcu0 /]# roc
rocfft_rtc_helper      rocm_agent_enumerator  rocm-bandwidth-test    rocminfo               rocm-smi               rocm_smi.py            rocm-smi.sh[root@dcu0 /]# rocm-smi==========================System Management Interface ==========================
================================================================================
DCU  Temp   AvgPwr  Fan   Perf  PwrCap  VRAM%  DCU%  
0    30.0c  39.0W   0.0%  auto  280.0W    0%   0%    
1    30.0c  41.0W   0.0%  auto  280.0W    0%   0%    
2    30.0c  38.0W   0.0%  auto  280.0W    0%   0%    
3    31.0c  39.0W   0.0%  auto  280.0W    0%   0%    
4    31.0c  41.0W   0.0%  auto  280.0W    0%   0%    
5    29.0c  38.0W   0.0%  auto  280.0W    0%   0%    
6    30.0c  39.0W   0.0%  auto  280.0W    0%   0%    
7    29.0c  38.0W   0.0%  auto  280.0W    0%   0%    
================================================================================
=================================End of SMI Log=================================

操作系统

银河麒麟 V10SP3

[root@dcu0 /]# cat /proc/version 
Linux version 4.19.90-52.26.v2207.ky10.x86_64 (KYLINSOFT@localhost.localdomain) (gcc version 7.3.0 (GCC)) #1 SMP Mon Jul 3 16:52:50 CST 2023

应用软件

Docker

Docker数据目录 /apps/docker

Docker内网源已配置

Python

系统自带Python3.7.9,不使用,自构建镜像

内网Pypi源配置

  • widows C:/用户目录/pip/pip.ini

  • linux ~/.pip/pip.conf

[global]
index-url=http://10.160.8.81:8081/repository/pypi-group/simple
trusted-host=10.160.8.81

在服务器上使用DCU显卡

支持调用显卡的Python库

  • Pytorch1.1
  • PaddlePaddle2.5.0
docker image list | grep -E 'paddle|pytorch'
image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle   2.5.0-ubuntu20.04-dtk-23.04-py38-latest    215c1adc490a        18 hours ago        11.9GB
image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle   2.4.2-ubuntu20.04-dtk-23.04-py38-latest    b9a73c180d74        2 months ago        10.4GB
image.sourcefind.cn:5000/dcu/admin/base/pytorch        1.10.0-ubuntu20.04-dtk-23.04-py38-latest   124ff31e5a8d        2 months ago        11.2GB

2.4.2-ubuntu20.04-dtk-23.04-py38-latest有BUG

使用到pytorch和paddlepaddle则需要在厂家提供的基础镜像上构建自己的镜像

本地远程连接服务器开发

本地新建项目

配置python解释器,仅用于pycharm代码提示补全

在这里插入图片描述

配置远程连接

  • Tools, Deployment, Configuration

在这里插入图片描述

SSH和SFTP连接

在这里插入图片描述

配置本地工作目录映射的服务器目录

选择Mappings,配置本地工作目录映射的服务器目录

服务器工作目录在/soft,建议在此目录下以自己姓名新建文件夹
在这里插入图片描述

设置服务器忽略目录

工作目录下的python虚拟环境venv不会被上传到服务器

在这里插入图片描述

配置自动上传

点击项目根目录,点击Tools Deployment Automatic Upload

手动点击一次Upload to,上传到服务器,检查是否上传成功

每次本地目录发生变化,会自动同步到服务器

在这里插入图片描述

编写Dockerfile

以运行chatgml2为例,构建需要的镜像

FROM image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-ubuntu20.04-dtk-23.04-py38-latest
LABEL authors="HuangChunFeng"# 工作目录
WORKDIR /root# 镜像内配置pypi源
RUN mkdir -p /root/.pip && \echo '[global]\nindex-url=http://10.160.8.81:8081/repository/pypi-group/simple\ntrusted-host=10.160.8.81' > /root/.pip/pip.conf# 安装python库,容器已自带pytorch1.10.0
RUN pip3 install fastapi uvicorn transformers sentencepiece

构建镜像

点击Tools Start SSH Session,ssh到服务器,cd到对应目录,构建镜像

Last login: Tue Aug 29 09:46:49 2023 from 10.160.73.71
[root@dcu0 ~]# cd /soft/huangchunfeng/projects/chatglm2-demo/
[root@dcu0 chatglm2-demo]# docker build -f ./Dockerfile -t hcf/chatglm2-demo .

在这里插入图片描述

本地安装和镜像中相同的依赖

仅用于pycharm代码提示,包版本尽量与容器中一致

在这里插入图片描述

编写代码

main.py

"""
@author: hcf
@time: 2023/8/29 10:14 
"""
from fastapi import FastAPI, Body
from pydantic import BaseModel
from typing_extensions import Annotated
from transformers import AutoTokenizer, AutoModel# docker run 指定的模型文件挂载路径
model_path = '/chatglm2-6b'
# 加载模型
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device='cuda')
model = model.eval()# web api
app = FastAPI()class ChatCompletionPayload(BaseModel):question: strstream: bool = Falseclass ChatCompletionView(BaseModel):response: str@app.post('/v1/chat/completion')
async def chat(payload: Annotated[ChatCompletionPayload, Body()]):response, _ = model.chat(tokenizer, payload.question)return ChatCompletionView(response=response)

编写启动脚本

#!/bin/bashcur_dir=$(cd "$(dirname $0)"; pwd)
# 测试时使用-it --rm参数
docker run -it --rm --name dcu-chatglm2-demo \
`# 容器网络配置` \
--ipc=host --network host \
`# 容器内使用DCU必备参数,需要使用DCU复制即可` \
--device=/dev/kfd --device=/dev/dri --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --shm-size=16G --group-add 39 \
`# 挂载工作目录` \
-v $cur_dir:/root \
`# 挂在模型文件` \
-v /soft/chatglm2-6b-boot/THUDM/chatglm2-6b:/chatglm2-6b \
hcf/chatglm2-demo \
`# 启动命令,需要激活env.sh环境变量` \
bash -c "source /opt/dtk/cuda/env.sh && uvicorn main:app --host 0.0.0.0 --port 8000"

启动容器

此时服务器对应目录下有3个文件

在这里插入图片描述

# 可执行权限
[root@dcu0 chatglm2-demo]# chmod +x ./startup.sh
[root@dcu0 chatglm2-demo]# ./startup.sh ______  ____________  ____  ________  __/ __ \ \/ /_  __/ __ \/ __ \/ ____/ / / // /_/ /\  / / / / / / / /_/ / /   / /_/ / / ____/ / / / / / /_/ / _, _/ /___/ __  /  
/_/     /_/ /_/  \____/_/ |_|\____/_/ /_/   DTK version 23.04
pytorch version 1.10.0
8 DCU were detected in the container.
NOTE: Make sure the user is in the video group.
For more information, please go to https://developer.hpccube.com/
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:07<00:00,  1.02s/it]
INFO:     Started server process [1]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

测试接口

可使用Postman,ApiPost等其他工具

直接在pycharm中New HTTP Request

在这里插入图片描述

测试结果

可使用Postman,ApiPost等其他工具

直接在pycharm中New HTTP Request

在这里插入图片描述

这篇关于DCU服务器基于Docker开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355628

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python开发一个有趣的工作时长计算器

《基于Python开发一个有趣的工作时长计算器》随着远程办公和弹性工作制的兴起,个人及团队对于工作时长的准确统计需求日益增长,本文将使用Python和PyQt5打造一个工作时长计算器,感兴趣的小伙伴可... 目录概述功能介绍界面展示php软件使用步骤说明代码详解1.窗口初始化与布局2.工作时长计算核心逻辑3

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示

Windows Server 2025 搭建NPS-Radius服务器的步骤

《WindowsServer2025搭建NPS-Radius服务器的步骤》本文主要介绍了通过微软的NPS角色实现一个Radius服务器,身份验证和证书使用微软ADCS、ADDS,具有一定的参考价... 目录简介示意图什么是 802.1X?核心作用802.1X的组成角色工作流程简述802.1X常见应用802.

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

使用Nginx配置文件服务器方式

《使用Nginx配置文件服务器方式》:本文主要介绍使用Nginx配置文件服务器方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 为什么选择 Nginx 作为文件服务器?2. 环境准备3. 配置 Nginx 文件服务器4. 将文件放入服务器目录5. 启动 N

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA